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C Active media

In this appendix we provide further details on the extension with an active media, where citizens obtain their
information from a collection of journalists with preferences that may not perfectly reflect the preferences of
the citizens.

C.1 Journalists’ best response

To construct the journalists’ best response, we start from the optimal action a(xj) for an individual journalist
with signal xj

a(xj) = (1− λ)E[ θ |xj ] + λE[A(θ) |xj ].
If other journalists use a(xj) = kxj + (1−k)z and the politician uses y(θ) = (1− δ)θ+ δz, then the aggregate
action is

A(θ) = ky(θ) + (1− k)z = k(1− δ)θ + (1− k(1− δ))z (C1)

Collecting terms then gives

a(xj) = (1− λ(1− k(1− δ)))E[ θ |xj ] + λ(1− k(1− δ)) z; (C2)

which is a weighted average of the posterior and prior expectations.
The posterior expectation continues to be

E[ θ |xj ] =
(1− δ)αx

(1− δ)2αx + αz
xj +

(
1− (1− δ)αx

(1− δ)2αx + αz

)
z (C3)

Plugging this formula back into (C2) and matching coefficients we get the fixed-point condition

k = (1− λ(1− k(1− δ))) (1− δ)αx
(1− δ)2αx + αz

which has the unique solution

k(δ) :=
(1− δ)α

(1− δ)2α+ 1
(C4)

where α := (1− λ)αx/αz. In this notation, k∗nm = k(0).

C.2 Politician’s welfare

The politician’s value function continues to be

v(k) := max
δ∈[0,1]

V (δ, k) (C5)

where V (δ, k) denotes the politician’s ex-ante expected utility if they choose manipulation δ and the journalists
have response coefficient k. This is again

V (δ, k) =
1

αz
(B(δ, k)− C(δ)) +

1

αx
k2 (C6)

where as in our benchmark model, B(δ, k) := (kδ + 1− k)2 and C(δ) := cδ2. In this notion, v∗ = v(k∗).
Let vnm(k) denote the politician’s value function without manipulation

vnm(k) := V (0, k) ≤ max
δ∈[0,1]

V (δ, k) =: v(k) (C7)

In this notation, v∗nm = vnm(k∗nm).
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When does manipulation backfire?

Supplementary Proposition 1.

(i) For each λ < −1/2 and c < 1, there exists a cutoff signal precision α∗x such that for all αx < α∗x the
politician’s manipulation backfires, v∗ < v∗nm.

(ii) For each λ > +1/2 and c > 1, there exists a cutoff signal precision α∗x > α∗x such that for all αx > α∗x
the politician’s manipulation backfires, v∗ < v∗nm.

Proof. See Appendix F.2.

To understand why backfiring can occur, notice that the manipulation technology has both direct and indirect
effects on the politician’s payoff. The direct effect benefits the politician by making the journalists’ signals
noisier than they would be absent manipulation. The indirect effect causes the journalists’ equilibrium
response coefficient to change from k∗nm to k∗, which may or may not benefit the politician.

Backfiring occurs when the change from k∗nm to k∗ moves against the politician’s interest by a sufficiently
large amount. If λ < 0 the politician prefers higher k∗ and backfiring will occur when journalists are suffi-
ciently less responsive to their signals than they would be absent manipulation, i.e., when k∗ is sufficiently
smaller than k∗nm. If λ > 0 the politician prefers lower k∗ and backfiring will occur when journalists are suffi-
ciently more responsive to their signals than they would be absent manipulation, i.e., when k∗ is sufficiently
larger than k∗nm.

To see this, we decompose the change in the politician’s payoff as

v∗ − v∗nm = (v(k∗)− vnm(k∗)) + (vnm(k∗)− vnm(k∗nm)) (C8)

Since v(k) ≥ vnm(k) for all k, the first term in the decomposition (C8) is not negative. So to obtain backfiring
the second term vnm(k∗)− vnm(k∗nm) must be sufficiently negative. Now observe that this second term is a
comparison of the function vnm(k) at two different points, k∗ and k∗nm, where vnm(k) := V (0, k) is given by1

vnm(k) =
1

αz
(1− k)2 +

1

αx
k2. (C9)

This quadratic in k decreases from vnm(0) = 1/αz till it reaches its global minimum at kmin := αx/(αx+αz)
and then increases to vnm(1) = 1/αx. Now suppose the journalists’ actions are strategic substitutes, λ < 0.
Then k∗nm > kmin and so vnm(k) is strictly increasing on (k∗nm, 1). So if λ < 0 a necessary condition for
vnm(k∗) − vnm(k∗nm) < 0 is that k∗ < k∗nm. Similarly, if the journalists’ actions are strategic complements,
λ > 0, then k∗nm < kmin and so vnm(k) is strictly decreasing on (0, k∗nm). So if λ > 0 a necessary condition
for vnm(k∗)− vnm(k∗nm) < 0 is that k∗ > k∗nm.

Conditions on the primitives. We now establish conditions on the primitives sufficient to ensure that
the gap between vnm(k∗) and vnm(k∗nm) is indeed large enough that the politician’s manipulation backfires.
To do this we use:

Remark 1. Journalists are less responsive to their signals with manipulation

k∗(α, c) < k∗nm(α) if and only if c < c∗nm(α) (C10)

where

c∗nm(α) =


α

α− 1

(
α

α+ 1

)2

if α > 1

+∞ if α ≤ 1

(C11)

Proof. From Lemma 1, if α ≤ 1 then k(δ) is decreasing in δ. Any c < +∞ implies δ∗(α, c) > 0 and hence
k(δ∗) < k(0). Recall that k(0) = α/(α + 1) =: k∗nm(α). Therefore, if α ≤ 1, it is always the case that
k∗(α, c) < k∗nm(α). With α > 1, k(δ) is first increasing and then decreasing in δ. We then need to find

1This expression for vnm(k) can also be obtained as the limit of v(k) from (??) as c→∞.
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combinations of (α, c) that give k∗(α, c) = k∗nm(α). To do so, first determine the equilibrium δ∗ that equates
k(δ;α) and k∗nm(α), namely

δ∗nm(α) =
α− 1

α
, α > 1 (C12)

Then solve for c that equates δ(k∗nm(α); c) and δ∗nm(α), namely

c =
α

α− 1

(
α

α+ 1

)2

=: c∗nm(α) (C13)

(with c∗nm(α) = +∞ for α ≤ 1). We now show that k∗(α, c) < k∗nm(α) iff c < c∗nm(α). Observe that

δ∗nm(α) =
α− 1

α
> δ̂(α) (C14)

where δ̂(α) is the critical point from Lemma 1. Hence k(δ;α) is decreasing in δ for any δ ≥ δ∗nm(α). Now
observe that k(δ∗nm(α);α) = k∗nm(α) so that k∗(α, c) < k∗nm(α) iff δ∗(α, c) > δ∗nm(α). From Lemma 4 we
know that δ∗(α, c) is strictly decreasing in c hence any c < c∗nm(α) is equivalent to δ∗(α, c) > δ∗nm(α).

In other words, if the composite parameter α ≤ 1 then we know that k∗ < k∗nm regardless of c but if α > 1
then the journalists’ k∗ is less than k∗nm only if c is low enough.2

Now observe from (C9) that vnm(k) is a linear combination of the terms (1 − k)2 and k2 with the
relative importance of the k2 term decreasing in αx. As αx decreases, the function vnm(k) behaves more
like the increasing k2 term so that if λ < 0 and k∗ < k∗nm then the second term in the decomposition
vnm(k∗) − vnm(k∗nm) becomes more and more negative, eventually becoming negative enough that the net
result is for the politician to be worse off. Similarly, as αx increases, the function vnm(k) behaves more
like the decreasing (1 − k)2 term so that if λ > 0 and k∗ > k∗nm the second term in the decomposition
vnm(k∗) − vnm(k∗nm) becomes more and more negative, eventually becoming negative enough that the net
result is that the politician is again worse off.

When does manipulation benefit? Although information manipulation can backfire on the politician,
there are nonetheless clear situations where the politician benefits from information manipulation.

Supplementary Proposition 2. The politician benefits from manipulation, v∗ > v∗nm, if either:

(i) The journalists’ actions are strategic substitutes, λ ≤ 0, and the costs of manipulation are sufficiently
high, c > c∗nm(α), or

(ii) The journalists’ actions are strategic complements, λ ≥ 0, and the costs of manipulation are sufficiently
low, c < c∗nm(α).

Proof. Recall the decomposition (C8) above. Since v(k) ≥ vnm(k) for all k, the first term is not negative,
so for the politician to gain it is sufficient that the second term vnm(k∗) − vnm(k∗nm) is positive. When
the journalists’ actions are strategic substitutes, λ < 0, vnm(k) is strictly increasing on (k∗nm, 1) and hence
vnm(k∗) − vnm(k∗nm) is positive if k∗ > k∗nm. From Remark 2 we know that k∗ > k∗nm if and only if
c > c∗nm(α). Similarly, when the journalists’ actions are strategic substitutes, λ > 0, vnm(k) is strictly
decreasing on (0, k∗nm) and hence vnm(k∗)−vnm(k∗nm) is positive if k∗ < k∗nm, which from Remark 2 happens
if and only if c < c∗nm(α).

These sufficient conditions guarantee that the introduction of the manipulation technology changes the jour-
nalists’ equilibrium response coefficient from k∗nm to k∗ in a direction that benefits the politician, i.e., in-
creasing to k∗ > k∗nm if λ < 0 or decreasing to k∗ < k∗nm if λ > 0. Notice that in the knife-edge special case
with no interactions among journalists, λ = 0, the politician benefits from manipulation regardless of c.

Figure 8 illustrates both benefits from manipulation and backfiring in the same figure. The top row
shows the politician’s benefit from manipulation v∗ − v∗nm as a function of the intrinsic precision αx for the

2The function c∗nm(α) is at first steeply decreasing in α, crosses c∗nm(α) = 1 and then reaches a minimum
before increasing again, approaching c = 1 from below as α→∞. So in the limit as α→∞, the question of
whether or not the equilibrium k∗ is less than k∗nm reduces to whether or not c is more or less than 1.
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Figure 1: Politician benefits most when c is low and αx is high.

Politician’s benefit from manipulation v∗ − v∗nm (top row) and payoff v∗ (bottom row) as functions of the intrinsic precision
αx for various costs of manipulation c when the journalists’ actions are strong strategic substitutes λ < −1/2 (left column) or
strong strategic complements λ > 1/2 (right column). The politician’s payoff absent manipulation v∗nm asymptotes to zero as
αx → ∞. If c > 1 the politician’s payoff with manipulation v∗ also asymptotes to zero but if c < 1 then v∗ asymptotes to
(1 − c)/αz > 0 so that the politician benefits. The politician benefits the most when when c is low and αx is high. In the left
column we use λ < −1 to highlight that for this parameter setting v∗ and v∗nm need not be monotonic in αx.
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case of low costs of manipulation, c < 1 (in blue), and the case of high costs of manipulation, c > 1 (in
red). The bottom row shows the underlying levels v∗ for c < 1 (in blue) and c > 1 (in red) along with the
politician’s welfare v∗nm in the absence of manipulation (dashed black). The left column shows the results
when the journalists’ actions are strong strategic substitutes, λ < −1/2. The right column shows the results
when the journalists’ actions are strong strategic complements, λ > +1/2.

A striking feature of Figure 8 is that the politician gains the most from manipulation when c is low and
αx is high, regardless of λ.

C.3 Journalists’ and citizens’ welfare

Journalists. We first define the journalists’ loss function

lJ (δ) := min
k∈[0,1]

LJ (k, δ) (C15)

where LJ (k, δ) denotes the journalists’ ex-ante expected loss, i.e., the expectation of (??) in the main text
with respect to the prior that θ is normally distributed with mean z and precision αz, if they choose k when
the politician has manipulation δ. This works out to be

LJ (k, δ) =
1− λ
αz

B(δ, k) +
1

αx
k2 (C16)

where again B(δ, k) := (kδ + 1 − k)2 denotes the politician’s benefit from manipulation. Evaluating at the
journalists’ best response k(δ) and collecting terms gives

lJ (δ) = LJ (k(δ), δ) =
1

αx

(
k(δ)

1− δ

)
=

(
1

1 + α(1− δ)2
)

1− λ
αz

. (C17)

Citizens. The citizens evaluate outcomes according to the loss∫ 1

0

(aj − θ)2 dj = (A− θ)2 +

∫ 1

0

(aj −A)2 dj (C18)

So the citizens are at their bliss point if the journalists all produce aj = θ.
Now let LC(k, δ) denote the citizens’ ex ante expected loss, i.e., the expectation of (C18) with respect to

the prior that θ is normally distributed with mean z and precision αz, if the journalists choose k when the
politician has manipulation δ. This works out to be

LC(k, δ) =
1

αz
B(δ, k) +

1

αx
k2 (C19)

as in equation (??) in the main text.

Wedge between journalists’ and citizens’ losses. Comparing (C19) and (C16) we see that

LC(k, δ) = LJ (k, δ) +
λ

αz
B(δ, k) (C20)

In the special case λ = 0, where the journalists care only about accurate reporting with no interactions
amongst themselves, the citizens’ loss and the journalists’ loss coincide. More generally, since B(δ, k) ≥ 0,
the citizens’ loss is larger than the journalists’ loss whenever λ > 0 and is less than the journalists’ loss
whenever λ < 0. Intuitively, an incentive to coordinate, λ > 0, means that individual journalists respond
more to their common prior z than its underlying precision warrants. Therefore, from the citizens’ point of
view, the journalists are excessively responsive to their prior and hence under-responsive to the information
contained in their signals. For example, if λ→ 1 the journalists can be quite content when they are producing
similar reports, ai ≈ A, even if those reports are far from θ and hence very unsatisfactory from the citizens’
point of view.
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Effects of manipulation on journalists and citizens. Evaluating LJ (k, δ) at the journalists’ best
response k(δ) we can then write

lC(δ) := LC(k(δ), δ) = lJ (δ) +
λαz

(1− λ)2
lJ (δ)2 (C21)

The comparison of the citizens’ equilibrium loss with and without manipulation is then reduced to comparing
l∗C = lC(δ∗) and l∗C,nm = lC(0). Similarly, the comparison of the journalists’ equilibrium loss with and without
manipulation is reduced to comparing l∗J = lJ (δ∗) and l∗J ,nm = lJ (0). Our main result here is:

Supplementary Proposition 3.

(i) The journalists are worse off with manipulation, l∗J > l∗J ,nm.

(ii) The citizens are worse off with manipulation, l∗C > l∗C,nm, if λ > −1.

(iii) The citizens are better off with manipulation, l∗C < l∗C,nm, if λ < −1 and αx < α̂ ∗∗x .

Proof. See Appendix F.2.

So the journalists are always worse off with manipulation. Whether the citizens are worse off or not depends on
the strategic interactions among the journalists. If the journalists’ actions are not strong strategic substitutes,
λ > −1, the citizens are also unambiguously worse off with manipulation. But if the journalists’ actions are
strong strategic substitutes, λ < −1, and if in addition the intrinsic precision of journalists’ signals is low
enough, αx < α̂ ∗∗x , then, perhaps surprisingly, the citizens are in fact better off with manipulation. To
understand this, first notice that when λ < −1, the journalists have a strong incentive to differentiate
themselves from one another and their response k to their idiosyncratic signals is, from the citizens’ point of
view, more than is warranted by the underlying precision of their signals. This is especially problematic for the
citizens when the signals are imprecise, i.e., when αx is very low. By reducing k, the politician’s manipulation
then “corrects” for this, which makes the citizens better off than they would be absent manipulation.3

Effects of αx on journalists’ loss. Notice from the journalists’ loss function (C17) the strategic interaction
term (1− λ) and the prior precision αz simply scale the whole loss. Similar to the citizens’ loss (C17) in the
benchmark model, we can measure the equilibrium payoffs for the journalists, l∗J = lJ (δ∗), by their indirect
utility evaluated at the equilibrium manipulation:

u∗(α, c) = α(1− δ∗(α, c))2. (C22)

This term is identical to (??) in the main text except that the composite precision parameter α := (1−λ)αx/αz
now incorporates the effect of the strategic interactions. The welfare results on u∗(α, c) in Proposition 3 and
Remark 1 of the main text therefore also apply to the equilibrium payoffs of the journalists in the extended
model. In the following corollary, we restate the welfare results in terms of the journalists’ loss and the
intrinsic signal precision αx:

Remark 2. The journalists’ loss l∗J is strictly decreasing in αx if and only if αx < α∗∗x . For c > 1 the
critical point α∗∗x = +∞.

Proof. The journalists’ loss l∗J is proportional to (1+u∗(α, c))−1. Using part (i) and (ii) of Proposition 3 and
the definition of the composite precision parameter α := (1 − λ)αx/αz, we obtain α∗∗x = (αz/(1 − λ))α∗(c)
where α∗(c) is the critical value in part (ii) of Proposition 3.

3The region of the parameter space where the citizens are better off with manipulation is in a sense quite
small. The critical point turns out to be

α̂ ∗∗x = −
(

1 + λ

(1− λ)2

)
αz, λ < −1

This is maximized at λ = −3 for which α̂ ∗∗x = αz/8. Even allowing the value of λ most favorable to this
scenario, it only occurs if the intrinsic signal precision αx is less than one-eighth of the prior precision αz.
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Figure 2: Citizens and journalists lose most when c is low and αx is high.

Citizens’ loss l∗C and journalists’ loss l∗J as functions of αx for c > 1 (top row) and c < 1 (bottom row) and for λ > −1 (left
column) and λ < −1 (right column). If λ > −1 both loss functions move in the same direction in response to αx. If c > 1 both
loss functions are strictly decreasing (top left). If c < 1 both loss functions are ∪-shaped with critical point α∗∗x (bottom left).
If λ < −1 the loss functions move in the same direction only between the critical points α∗∗x and α∗∗x (right column). If c < 1
the citizens’ loss asymptotes to 1/αz and the journalists’ loss asymptotes to (1−λ)/αz . For the left column we use λ > 0 which
implies that the journalists’ loss is less than the citizens’ loss. The colored dashed lines show the corresponding loss functions
absent manipulation. If λ < −1 then for αx sufficiently small the citizens are better off with manipulation.
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Effects of αx on citizens’ loss. Evaluating the expression for the citizens’ loss in (C21) at the equilibrium
manipulation δ∗ gives

l∗C = l∗J +
λαz

(1− λ)2
l∗ 2J (C23)

Hence the effects of αx on the citizens’ equilibrium loss are given by the total derivative

dl∗C
dαx

=
dl∗J
dαx

[
1 +

2λαz
(1− λ)2

l∗J

]
(C24)

This expression is convenient because all the effects of αx enter l∗C only through l∗J . This gives:

Supplementary Proposition 4. The citizens’ loss l∗C and the journalists’ loss l∗J move in the same direction
in response to changes in αx if and only if either (i) λ > −1, or (ii) λ < −1 and αx ∈ (α∗∗x , α

∗∗
x ). For c > 1,

α∗∗x = +∞.

Proof. See Appendix F.2.

Figure 2 illustrates the effects of αx on the journalists’ and citizens’ loss. The left and right columns
show the cases λ > −1 and λ < −1 respectively. The top and bottom rows show the cases c > 1 and c < 1
respectively. Each panel shows the loss of the citizens l∗C and the journalists l∗J as functions of αx. The
dashed lines demarcate the critical points α∗∗x and α∗∗x , α

∗∗
x . As with the journalists’ loss, the limit of the

citizens’ loss as αx →∞ is sensitive to the costs of manipulation c. If c < 1, as αx →∞ the citizens’s loss l∗C
asymptotes to the same loss 1/αz the citizens would have if αx = 0. If c > 1, the citizens’s loss l∗C asymptotes
to zero, the same limit of the citizens’ loss without manipulation, l∗C,nm.

D Heterogeneous priors and manipulation of the signal

variance

In this appendix we provide further details on the extension where citizens have heterogeneous priors and
where the politician can manipulate the signal variance.

Setup. Given that the citizens have linear strategies a(xi, zi) = kxi + (1 − k)zi the politican’s problem is
now to choose y and γ to maximize

V (y, γ) =

∫ 1

0

(k(y + εi) + (1− k)(z + ηi)− θ)2 di− c(y − θ)2 − cγ(γ − 1)2

= (ky + (1− k)z − θ)2 + γσ2
xk

2 + σ2
η(1− k)2 − c(y − θ)2 − cγ(γ − 1)2

The first order condition for the variance manipulation factor γ can be written

γ(k) = 1 +
σ2
x

2cγ
k2 (D1)

And since the objective is separable in y and γ the first order condition for the signal mean y is as in the
benchmark model

y(θ) = (1− δ)θ + δz, δ(k) =
k − k2
c− k2 (D2)

where the second order condition again requires c − k2 ≥ 0. The optimal action for the citizens is ai =
E[θ |xi, zi]. The citizens have signals xi = y + εi = (1 − δ)θ + δz + εi and prior zi = z + ηi = θ + εz + ηi.
Using the properties of the bivariate normal distribution, conditional on xi, zi the citizens posterior for θ is
normal with expected value

E[θ |xi, zi] =
(1− δ)σ2

z + σ2
η

(1− δ)2σ2
z + σ2

η + γσ2
x

xi +

(
1− (1− δ)σ2

z + σ2
η

(1− δ)2σ2
z + σ2

η + γσ2
x

)
zi

Hence indeed the citizens have strategies of the form a(xi, zi) = kxi + (1− k)zi where

k(δ, γ) =
(1− δ)σ2

z + σ2
η

(1− δ)2σ2
z + σ2

η + γσ2
x

(D3)
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Equilibrium.

Supplementary Proposition 5. There is a unique equilibrium, that is, a unique triple k∗, δ∗, γ∗ simulta-
neously satisfying the three best response functions (D1), (D2), and (D3)

Proof. Plugging the expressions for γ(k) and δ(k) into (D3), we can write the equilibrium problem as solving
the following fixed point problem in k

L (k) = R (k) (D4)

analogous to (??), where now

L(k) := (k − 1)
σ2
η

σ2
z

+ k

(
1 +

σ2
x

2cγ
k2
)
σ2
x

σ2
z

(D5)

and where

R(k) := c
(c− k)(1− k)

(c− k2)2
(D6)

The curve R(k) on the RHS is exactly the same as in (??) from the proof of Proposition 1 and is
strictly decreasing in k with limits R(0) = 1 and R(min(

√
c, 1)) =: R(c). The curve L(k) on the LHS is

a generalization of its counterpart in (??) and nests our benchmark model as a special case. In particular,
when σ2

η = 0 and cγ → +∞ the LHS reduces to

L(k) = k
σ2
x

σ2
z

, {σ2
η = 0, cγ →∞}

which, recognizing σ2
x/σ

2
z = αz/αx = 1/α is the same L(k) = k/α as in the benchmark model (??). Here the

LHS is strictly increasing in k with limits L(0) = −σ2
η/σ

2
z < 0 and L(min(

√
c, 1)) := L(c).

If c ≥ 1, we clearly have L(c) = L(1) > 0 and R(c) = R(1) = 0, so by the intermediate value theorem,
there is a unique k∗ ∈ [0, 1] solving L(k∗) = R(k∗).

If c < 1, as k → √c on the LHS we have finite limit

L(c) = L(
√
c) = (

√
c− 1)

σ2
η

σ2
z

+
√
c

(
1 +

σ2
x

2cγ
c

)
σ2
x

σ2
z

(D7)

whereas on the RHS we have

R(c) = R(
√
c) = c(c−√c)(1− c) lim

k→√c

1

(c− k2)2
= −∞ (D8)

since c <
√
c < 1. Hence by the intermediate value theorem there is a unique k∗ ∈ [0,

√
c] such that

L(k∗) = R(k∗). The equilibrium γ∗ and δ∗ are in turn determined by the best response functions γ(k) and
δ(k) evaluated at k∗.

Comparative statics.

Supplementary Proposition 6. The equilibrium signal variance σ2 ∗
x = γ∗σ2

x is:

(i) Increasing in the intrinsic signal variance σ2
x, and

(ii) Increasing in the prior dispersion σ2
η.

Proof. For part (i), from the best response (D1), the dervivative of σ2 ∗
x = γ∗σ2

x is

d

dσ2
x

σ2 ∗
x =

d

dσ2
x

(
σ2
x +

1

2cγ

(
kσ2 ∗

x

)2)
= 1 +

kσ2
x

cγ
+
kσ4

x

cγ

dk

dσ2
x

which is positive if and only if

dk

dσ2
x

> −
1 +

k2σ2
x

cγ

kσ4
x

cγ

= −
k +

k3σ2
x

cγ

k2σ4
x

cγ

(D9)

9



The equilibrium k∗ is the solution to the fixed point problem (D4), which can be written:

H
(
k, σ2

x

)
:= k

(
c− k
c− k2

)2

σ2
z + k

(
σ2
η + σ2

x

)
+

k3

2cγ

(
σ2
x

)2 − c− k
c− k2σ

2
z − σ2

η = 0 (D10)

Using the implicit function theorem:

dk

dσ2
x

= −
∂H
∂σ2

x

∂H
∂k

= −
k + k3

σ2
x

cγ

3
2k

2 σ
4
x

cγ
+ (σ2

η + σ2
x) + σ2

z

[
∂
∂k

(
k
(
c−k
c−k2

)2
− c−k

c−k2

)] (D11)

Comparing the denominators of the RHS of inequalities (D9) and (D11), we find that a sufficient condition
for (D9) to hold is

∂

∂k

(
k

(
c− k
c− k2

)2

− c− k
c− k2

)
> 0 (D12)

The derivative works out to be (
c− k
c− k2

)2

+

(
2kc− k2 − c

)2
(c− k2)

3 (D13)

which is strictly positive since from the second order condition of the politician’s maximization, c− k2 > 0.
For part (ii), from the best response (D1), we have σ2 ∗

x = γ∗σ2
x is increasing in σ2

η if and only if k∗ is
increasing in σ2

η. Recall that k∗ is determined in the fixed point problem (D4). Then observe that R (k) is

independent of
(
σ2
x, σ

2
η

)
and L (k) is decreasing in σ2

η. Combining with the fact that R′ (k) < 0 and L′ (k) > 0,
we can conclude that k∗ is increasing in σ2

η.

“Regime changes” in the amount of manipulation. First we define the mapping:

F
(
k, σ2

z , σ
2
x, σ

2
η, cγ

)
:=

σ2
z

σ2
z + σ4

x k
3 (1 + k) /cγ + σ2

η (1 + k)
(D14)

To facilitate some comparisons, in some of the expressions below we return to precision notation αx = 1/σ2
x

and αz = 1/σ2
z with relative precision α = αx/αz etc. With this notation in mind we then have a result

analogous to Proposition 2 in the main text:

Supplementary Proposition 7.

(i) For each α < 2 +
√

4 + 2/ (cγαz), the politician’s equilibrium manipulation δ∗ is smoothly decreasing
in c with

dδ∗

dc

∣∣∣∣
c=1

= − k∗

(1− k∗) (1 + k∗)2 + (1− k∗)2 k∗F
(
k∗, σ2

z , σ
2
x, σ

2
η, cγ

) < 0 (D15)

This derivative approaches −∞ as α→ 2 +
√

4 + 2/ (cγαz).

(ii) For each α > 2 +
√

4 + 2/ (cγαz), the politician’s manipulation jumps discontinuously from δ (α, αx)
as c→ 1− to δ(α, αx) as c→ 1+ where

δ (α, αx) , δ (α, αx) =
1

2

(
1±

√
1− (4/α)− 2/(cγααx)

)
.

The size of the jump δ (α, αx)− δ (α, αx) is increasing in αx and independent of σ2
η.

(iii) For any c > 1, the politician’s equilibrium manipulation δ∗ is bounded above by 1/2 and can be made
arbitrarily close to zero by making αx large enough.

Proof. For part (i), applying the implicit function theorem to δ∗ = δ (k∗ (δ∗) , c), we obtain

dδ∗

dc
=

(
1

1− δ′ (k∗) k′ (δ∗)

)
∂δ (k∗, c)

∂c
(D16)

10



just as in equation (??), but now we have

k′ (δ∗)

∣∣∣∣
c=1

= − (1− k∗)σ2
z/(1 + k2)

(σ2
x)

2
(k∗)2 /cγ + σ2

z/
(
k∗ + (k∗)2

)
+ σ2

η/k
∗

δ′ (k∗)

∣∣∣∣
c=1

=
1

(1 + k∗)2

∂δ (k∗, c)
∂c

∣∣∣∣
c=1

= − k∗

(1− k∗) (1 + k∗)2
.

Substituting these expressions in (D16) and using the definition of F
(
k, σ2

z , σ
2
x, σ

2
η, cγ

)
in (D14) and simpli-

fying then gives the expression in (D15).
Notice that F

(
k∗, σ2

z , σ
2
x, σ

2
η, cγ

)
= 1 if cγ =∞ and σ2

η = 0, which is our benchmark case where

dδ∗

dc

∣∣∣∣
c=1

= − k∗

(1− k∗) (1 + k∗)2 + (1− k∗)2 k∗

This derivative approaches −∞ as k∗ → 1. In turn, as in the main text, k∗ is increasing in α and approaches
1 as α becomes sufficiently large.

For part (ii), δ (α, αx) and δ (α, αx) are the roots of

k (δ, 1) =
(1− δ)σ2

z + σ2
η

(1− δ)2 σ2
z + σ2

η + σ2
x + 1

2cγ
(σ2
x)

2 = 1

The roots exist when α ≥ 2 +
√

4 + 2/ (cγαz). In the knife-edge case α = 2 +
√

4 + 2/ (cγαz) exactly, the
two roots are the same and are equal to 1/2 so that the unique equilibrium is (k∗ = 1, δ∗ = 1/2).

For part (iii), the proof is the same as the part (iii) of Proposition 2.

E Weights on components of citizens’ loss function

In this appendix, we discuss a further extension to our benchmark model that allows the citizens to have
different weights on the (ai− θ)2 and (A− θ)2 terms in their loss function (in other words, allows the citizens
to weigh these discord and disinformation terms differently to the policitican). In particular, suppose each
citizen seeks to minimize the expected loss

li = (ai − θ)2 + ω(A− θ)2 (E1)

The weight ω does not affect their optimal action so we still have the usual

ai = kxi + (1− k)z (E2)

where k is given by

k(δ) =
(1− δ)α

(1− δ)2α+ 1
, α := αx/αz (E3)

The weight ω plays no role in determining the equilibrium outcomes k∗, δ∗ but it does affect how those
outcomes are evaluated. The citizens’ ex ante expected loss is now

L(k, δ;ω) =
1 + ω

αz
B(k, δ) +

1

αx
k2 (E4)

where as usual B(k, δ) = (kδ + 1− k)2. Notice that ω = 0 is our benchmark model. Now write this as

L(k, δ;ω) = L(k, δ; 0) +
ω

αz
B(k, δ). (E5)

11



And recall that at the best response

B(k(δ), δ) = (1− k(δ) (1− δ))2 =

(
k(δ)

α(1− δ)

)2

(E6)

so that we can write

L(k, δ; 0) =
1

αx

k(δ)

1− δ . (E7)

which then implies

B(k(δ), δ) =
(αx
α
L(k, δ; 0)

)2
= (αzL(k, δ; 0))

2
(E8)

so that we can then write
L(k, δ;ω) = L(k, δ; 0) + ωαzL(k, δ; 0)2 (E9)

Now let l∗(ω) := L(k∗, δ∗;ω). In this notation l∗(0) is the citizens’ loss in our benchmark model. We then
have the following welfare result analogous to Supplementary Proposition 4 in Appendix C above.

Remark 3. l∗(ω) and l∗(0) move in the same direction in response to changes in αx if and only if either (i)
ω > −1/2, or (ii) ω < −1/2 and αx ∈ (α∗∗x , α

∗∗
x ). For c > 1, α∗∗x = +∞.

Proof. From (E9) we have
dl∗(ω)

dαx
= (1 + 2ωαzl

∗(0))× dl∗(0)

dαx

So the two derivatives share the same sign if and only if

1 + 2ωαzl
∗(0) > 0 (E10)

Clearly ω ≥ 0 suffices for the inequality above. When ω < 0, the inequality above can be written as

l∗(0) < − 1

2ωαz
=: lcrit (E11)

We know from Proposition 3 and Remark 1 that the maximum of l∗(0) is l∗max = 1/αz. If l∗max < lcrit,
i.e., if ω > −1/2, the inequality (E11) holds. Alternatively, if l∗max < lcrit, i.e., if ω < −1/2, there exists a
subset of αx such that the inequality (E11) does not hold. For any c > 1, l∗(0) is strictly decreasing in αx
with limαx→0+ l

∗(0) = l∗max and limαx→∞ l∗(0) = 0. For any c < 1, l∗(0) is strictly decreasing in αx if and
only if αx < α∗∗x , and limαx→0+ l

∗(0) = limαx→∞ l∗(0) = l∗max. Using the same argument as in the proof of
Supplementary Proposition 4, we can conclude that conditional on ω < −1/2, the inequality (E11) holds if
and only if αx ∈ (α∗∗x , α

∗∗
x ).

F Omitted proofs

In this appendix we provide proofs of results hitherto omitted. We first state and prove two supplementary
lemmas used in proof of Proposition 3 in the main text. We then provide proofs of the supplemantary
propositions in the extension with active media in Appendix C above.

F.1 Further details from proof of Proposition 3 in main text

Supplementary Lemma 1. The total derivative of the journalists’ equilibrium loss l∗ with respect to α is
strictly positive if and only if

F (k∗) := k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (F1)

Proof. Recall that l∗ = l(δ∗;α) where

l(δ;α) =
1

(1− δ)2α+ 1
(F2)
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From this we obtain
dl∗

dα
> 0 ⇔ (1− δ∗)− 2α

dδ∗

dα
< 0 (F3)

Equivalently, if and only if
dδ∗

dα
>

1

2α
(1− δ∗) > 0 (F4)

Now recall that in equilibrium the politician’s manipulation depends on αx only via the journalists’ response
coefficient, δ∗(α) = δ(k∗(α)), so that

dδ∗

dα
= δ′(k∗)

dk∗

dα
(F5)

So we can write condition (F4) as

δ′(k∗)
dk∗

dα
>

1

2α
(1− δ∗) > 0 (F6)

Applying the implicit function theorem to the equilibrium condition (??) from the main text we have

dk∗

dα
=

1
α2 k
∗

1
α −R′(k∗)

> 0 (F7)

where R(k) is defined in (??) in the main text. Plugging this into (F6) and simplifying we get the equivalent
condition

1

α

(
δ′(k∗)k∗ − 1

2
(1− δ∗)

)
> −1

2
(1− δ∗)R′(k∗) (F8)

Now observe from (??) in the main text that

δ′(k∗)k∗ − 1

2
(1− δ∗) =

1

2

(
1

c− k∗2
)2 (

k∗3 − 3ck∗2 + 3ck∗ − c2
)

(F9)

and that using the formula for R′(k) given in (??) in the main text we can calculate that

1

2
(1− δ∗)R′(k∗) =

1

2

(
1

c− k∗2
)2

R(k∗)
1

1− k∗P (k∗) (F10)

where P (k) is also defined in (??). Plugging these calculations back into (F8) gives

1

α

(
1

2

(
1

c− k∗2
)2 (

k∗3 − 3ck∗2 + 3ck∗ − c2
))

> −1

2

(
1

c− k∗2
)2

R(k∗)
1

1− k∗P (k∗) (F11)

Canceling common terms gives the condition

1

α

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> −R(k∗)

1

1− k∗P (k∗) (F12)

Using the equilibrium condition L(k∗) = R(k∗) from (??) gives

1

α

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> − 1

α

k∗

1− k∗P (k∗) (F13)

Using the definition of P (k) and canceling more common terms gives the condition

F (k∗) := k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (F14)

Supplementary Lemma 2. Define

F (k) := k4 − 2k3 + 2ck − c2 (F15)

(i) If c > 1, then F (k) < 0;

(ii) If c < 1, there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k ∈ (k, k) and F (k) ≤ 0
otherwise. Moreover, the cutoffs are on either side of c so that 0 < k < c < k < 1.
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Proof. Write F (k) = J(k; c)−G(k) where J(k; c) := 2ck− c2 and G(k) := 2k3 − k4. Observe that G(0) = 0,
G(1) = 1, G(k) < k for all k; G′(k) = 2k2(3−2k) ≥ 0 with G′(0) = 0 and G′(1) = 2; and G′′(k) = 12k(1−k) ≥
0 so that G′(k) ≤ G′(1) = 2 for all k. Further observe that J(0; c) = −c2 < 0, J(1; c) = 2c − c2 ≤ 1 (with
equality if c = 1) and J ′(k; c) = 2c > 0 for all k so that J(k; c) ≤ J(1; c) = 2c − c2 ≤ 1 for all k, c. These
imply F (0) = J(0; c)−G(0) = −c2 < 0 and F (1) = J(1; c)−G(1) = 2c− c2 − 1 ≤ 0 (with equality if c = 1);
F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) and F ′′(k) = −G′′(k) ≤ 0. Since G′(k) ≤ 2 we have

F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) ≥ 2c− 2 = 2(c− 1) (F16)

For part (i) c > 1. Then F ′(k) ≥ 2(c − 1) > 0 so F (k) is strictly increasing from F (0) = −c2 < 0 to
F (1) = 2c− c2 − 1 < 0 so that F (k) < 0 for all k.

For part (ii) c < 1. Then since G′(k) is monotone increasing from G′(0) = 0 to G′(1) = 2 there is a
unique critical point k̃ such that

F ′(k̃) = 0 ⇔ 2c = G′(k̃) (F17)

Since F ′′(k) ≤ 0, this critical point maximizes F (k) hence

F (k) ≤ max
k∈[0,1]

F (k) = F (k̃) (F18)

and observe that if we take k = c < 1 (which is feasible since here c < 1) then we have

F (c) = J(c; c)−G(c) = 2c2 − c2 −G(c) = c2 − 2c3 + c4 = c2(1− 2c+ c2) > 0 (F19)

so that indeed
F (k̃) ≥ F (c) > 0 (F20)

Hence for c < 1 there exist k such that F (k) > 0. More precisely, the function F (k) increases from F (0) =
−c2 < 0 to a lower cutoff k ∈ (0, k̃) defined by F (k) = 0. The function F (k) keeps increasing until it reaches
the critical point k̃ at which F ′(k̃) = 0 and F (k̃) > 0. From there F (k) decreases, crossing zero again at a
higher cutoff k ∈ (k̃, 1) defined by F (k) = 0 and keeps decreasing until F (1) = 2c− c2 − 1 < 0 (since c < 1).

So for c < 1 there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k ∈ (k, k) and F (k) ≤ 0
otherwise. For c < 1 these critical points are defined by the roots of F (k; c) = 0. Observe that since F (c) > 0
yet k is the first k for which F (k) = 0 it must be the case that k < c. Likewise since F (k) = 0 it must also
be the case that k > c. In short, the cutoffs are on either side of c so that 0 < k < c < k < 1.

F.2 Proofs of additional results from extension with active media

Proof of Supplementary Proposition 1

Using the fixed point condition (??) with the redefined α = (1− λ)αx/αz, we can write

v∗ =
1

(1− λ)αx

{
k∗ − λk∗2 +

k∗2(1− k∗)2
c− k∗

}
(F21)

Using the analogous condition for k∗nm, we can write

v∗nm =
1

(1− λ)αx

{
k∗nm − λk∗2nm

}
(F22)

Hence the politician’s manipulation backfires, v∗ < v∗nm, if and only if

g(k∗) < f(k∗nm)− f(k∗) (F23)

where

f(k) := k − λk2, g(k) :=
k2(1− k)2

c− k ≥ 0 (F24)

For part (i) suppose that λ < 0. We know from (C8) and (C9) that a necessary condition for the
politician’s manipulation to backfire is k < k∗nm. We can rewrite the inequality in (F23) as

k∗2(1− k∗)2
c− k∗ < (k∗nm − k)(1− λ(k∗nm + k∗)) (F25)
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Using the fixed point conditions (??) for both k∗ and k∗nm, we can rewrite the key condition (F25) as

λ <
1

c− k∗
K1K2

K3K4
(F26)

where

K1 := 4ck∗2 − c2 − k∗3 − 2ck∗3 − k∗4 + k∗5

K2 := c(c− k∗)(1− k∗) + k∗(c− k∗2)2 > 0

K3 := k∗3 − 2ck∗ + c > 0

K4 := (1 + k∗)(c− k∗2)2 + c(c− k∗)(1− k∗) > 0

Now consider taking αx → 0 for fixed λ < 0 such that k∗ → 0. We then have the following limits

K1 → −c2, K2 → +c2, K3 → c, K4 → 2c2

So in the limit the RHS of (F26) is

1

c− k∗
K1K2

K3K4
→ 1

(c− 0)

(−c2)(c2)

(c)(2c2)
= −1

2
(F27)

Hence for any λ < −1/2 we can find αx sufficiently close to zero such that (F26) is satisfied and in turn the
politician’s manipulation backfires, v∗ < v∗nm.

For part (ii), suppose that λ > 0. We know from (C8) and (C9) that the necessary condition for the
politician’s manipulation to backfire is k∗ > k∗nm. We can rewrite the inequality in (F23) as

k∗2(1− k∗)2
k∗ − k∗nm

< (λ(k∗nm + k∗)− 1))(c− k∗) (F28)

Using the fixed point conditions (??) for both k∗ and k∗nm, we can rewrite this key condition as

k∗2(1− k∗)
k∗nm
k∗

(
c (c−k∗)
(c−k∗2)2

)
− 1

< (λ(k∗nm + k∗)− 1))(c− k∗) (F29)

Observe that if, in addition, c > 1 and λ > 1/2, then the RHS of (F29) converges to a strictly positive
constant

lim
αx→∞

(λ(k∗nm + k∗)− 1))(c− k∗) = (λ2− 1)(c− 1) > 0 (F30)

(since k∗ → 1 if c > 1). But the LHS of (F29) converges to zero

lim
αx→∞

k∗2(1− k∗)
k∗nm
k∗ c

c−k∗
(c−k∗2)2 − 1

=
0+

c
(c−1) − 1

= 0+ (F31)

Therefore, if k∗ > k∗nm, c > 1 and λ > 1/2 then there exists α∗x such that for αx > α∗x the LHS of (F29) is
strictly less than the RHS of (F29) so that the politician’s manipulation backfires, v∗ < v∗nm.

Finally, we know from Remark 2 that k∗ < k∗nm if and only if c < c∗nm(α). Also observe that c < 1
is sufficient for c < c∗nm(α) if 1 < c∗nm(α). From (C11) we have 1 < c∗nm(α) if α < 1, or if α > 1 and
α < (1 +

√
5)/2. Since α = (1− λ)αx/αz, the critical point α∗x must be

α∗x <

(
1 +
√

5

2

)(
αz

1− λ

)
(F32)

Likewise, c > 1 is sufficient condition for c > c∗nm(α) if 1 > c∗nm(α), and we need α > (1 +
√

5)/2 to ensure
that 1 > c∗nm(α). Since α = (1− λ)αx/αz, the critical point α∗x must be

α∗x >

(
1 +
√

5

2

)(
αz

1− λ

)
(F33)

�
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Proof of Supplementary Proposition 3.

For part(i), lJ (δ) is increasing in δ from equation (C17). Hence, lJ (δ∗) > lJ (0) whenever δ∗ > 0. We then
have that the journalists are unambiguously worse off when the politician can manipulate. For part (ii) use
l∗C = lC(δ∗) and equation (C21) to write

l∗C = lJ (δ∗) +
λαz

(1− λ)2
lJ (δ∗)2 (F34)

and likewise

l∗C,nm = lJ (0) +
λαz

(1− λ)2
lJ (0)2 (F35)

Differencing these expressions we can write

l∗C − l∗C,nm =
(
lJ (δ∗)− lJ (0)

)
×
[
1 +

λαz
(1− λ)2

(
lJ (δ∗) + lJ (0)

)]
(F36)

Now write the term in square brackets on the LHS as ∆(δ∗) where ∆(δ) is the function

∆(δ) := 1 +
λαz

(1− λ)2

(
lJ (δ) + lJ (0)

)
(F37)

From part (i) we know lJ (δ∗) > lJ (0) so l∗C > l∗C,nm if and only if ∆(δ∗) > 0. Since αz > 0 and lJ (δ∗) >
lJ (0) > 0, a sufficient condition for ∆(δ∗) > 0 is that λ > 0. To prove part (ii) we need to show that any
λ > −1 is also sufficient. To see this, observe that since lJ (δ) is strictly increasing in δ, for λ < 0 we also
know that ∆(δ) is strictly decreasing in δ which in turn implies ∆(δ) ≥ ∆(1). Hence if λ < 0 a sufficient
condition for ∆(δ∗) > 0 is that ∆(1) > 0. Calculating ∆(1) gives

∆(1) = 1 +
λαz

(1− λ)2

(
lJ (1) + lJ (0)

)
= 1 +

λαz
(1− λ)2

(1− λ
αz

+
1− λ

(1− λ)αx + αz

)
where the second equality follows from the expression for lJ (δ) in equation (C17) evaluated at δ = 1 and
δ = 0. Simplifying further

∆(1) = 1 +
λ

1− λ
(

1 +
1

1 + α

)
(F38)

where α := (1− λ)αx/αz > 0. So for λ < 0 a sufficient condition for ∆(1) > 0 and hence ∆(δ∗) > 0 is

λ

1− λ
(

1 +
1

1 + α

)
> −1 (F39)

or equivalently
1 + α > −λ (F40)

Since α > 0 a sufficient condition for this is λ > −1. To summarize, any λ > −1 is sufficient for ∆(δ∗) > 0
and hence sufficient for l∗C > l∗C,nm. For part (iii) we then know that λ < −1 is necessary for l∗C < l∗C,nm.
Recall that ∆(δ) is strictly decreasing in δ, i.e., ∆(δ) ≤ ∆(0), for λ < 0. Hence for λ < −1 a sufficient
condition for ∆(δ∗) < 0 is that ∆(0) < 0. Calculating ∆(0) gives

∆(0) = 1 +
λαz

(1− λ)2

(
lJ (0) + lJ (0)

)
= 1 +

λαz
(1− λ)2

( 2(1− λ)

(1− λ)αx + αz

)
= 1 +

λ

1− λ
( 2

1 + α

)
So for λ < −1 a sufficient condition for ∆(0) < 0 and hence ∆(δ∗) < 0 is

α <
λ+ 1

λ− 1
= −

(
1 + λ

1− λ

)
, λ < −1 (F41)
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Since α := (1− λ)αx/αz > 0 we rewrite this as

αx < α̂∗∗x := −
(

1 + λ

(1− λ)2

)
αz, λ < −1 (F42)

To summarize, for each λ < −1 there is a critical point α̂∗∗x such that together λ < −1 and αx < α̂∗∗x are
sufficient for ∆(δ∗) < ∆(0) < 0 and hence sufficient for l∗C < l∗C,nm. �

Proof of Supplementary Proposition 4.

From equation (C24) we see that the derivative of l∗C with respect to αx and the derivative of l∗J with respect
to αx have the same sign if and only if

1 +
2λαz

(1− λ)2
l∗J > 0 (F43)

Write this key term T (δ∗) > 0 where

T (δ) := 1 +
2λαz

(1− λ)2
lJ (δ) (F44)

Clearly λ ≥ 0 suffices for T (δ∗) > 0. When λ < 0, T (δ∗) > 0 if and only if

l∗J < −
(1− λ)2

2λαz
:= lcrit (F45)

From Proposition 3 and Remark 1 we know that the maximum of l∗J is l∗max = (1− λ)/αz. If l∗max < lcrit,
i.e., if λ ∈ (−1, 0), the inequality (F45) holds and therefore T (δ∗) > 0. Alternatively, if l∗max > lcrit, i.e., if
λ ∈ (−∞,−1), there exists a subset of αx such that the inequality (F45) does not hold and in turn T (δ∗) < 0.

We now determine the set of αx such that (F45) does not hold, conditional on λ < −1. For any c > 1
we know from Proposition 3 and Remark 1 that l∗J is strictly decreasing in αx with limαx→0+ l

∗
J = l∗max

and limαx→∞ l∗J = 0. Hence for each λ < −1 and c > 1 there is a unique critical point α∗∗x > 0 such
that T (δ∗) > 0 if and only if αx > α∗∗x . Similarly, for any c < 1 we again know from Proposition 3 and
Remark 1 that l∗J is strictly decreasing in αx if and only if αx < α∗∗x and limαx→0+ l

∗
J = limαx→∞ l∗J = l∗max.

Let l∗min denote the journalists’ loss at the αx = α∗∗x that achieves the minimum. For any c < 1 and any
fixed loss l ∈ (l∗min, l

∗
max) there are two critical points αx(l) < α∗∗x < αx(l) such that l∗J < l if and only if

αx ∈ (αx(l), αx(l)). Then for each λ < −1 and c < 1 there are two possibilities, either lcrit ∈ (l∗min, l
∗
max) or

lcrit ≤ l∗min. For the interior cases lcrit ∈ (l∗min, l
∗
max) we define the critical points by α∗∗x := αx(lcrit) and

α∗∗x := αx(lcrit). For the boundary case lcrit ≤ l∗min we define the critical points by α∗∗x = α∗∗x = +∞. Given
these critical points, we have T (δ∗) > 0 if and only if αx ∈ (α∗∗x , α

∗∗
x ). �

G Knife-edge case c = 1

In this appendix we discuss the technicalities that arise when the costs of manipulation c = 1 exactly.

Preliminaries. There is no issue with c = 1 if the relative precision α ≤ 4. The issues with c = 1 arise only
if α > 4. To see this, first recall from Lemma 1 that if α > 1 the citizens’ best response k(δ;α) is increasing

in δ on the interval [0, δ̂(α)] and obtains its maximum at δ = δ̂(α) = 1−1/
√
α ∈ (0, 1). At the maximum, the

citizens’ best response takes on the value k(δ̂(α);α) =
√
α/2. Hence for α > 4 the maximum value exceeds

1. Moreover, by continuity of the best response in δ if α > 4 there is an interval of δ such that k(δ;α) > 1.
The boundaries of this interval (δ(α), δ(α)) are given by the roots of k(δ;α) = 1, which work out to be

δ(α) , δ(α) =
1

2

(
1±

√
1− (4/α)

)
, α ≥ 4 (G1)

Observe that this interval is symmetric and centred on 1/2 with a width of

δ(α)− δ(α) =
√

1− (4/α) ≥ 0, α ≥ 4 (G2)
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If α = 4, we have δ(4) = δ(4) = 1/2 but as α increases the width of the interval (δ(α), δ(α)) expands around
1/2 with the boundaries δ(α) → 0+ and δ(α) → 1− as α → ∞. Now recall from Proposition 1 that only
k ∈ [0,min(c, 1)] and δ ∈ [0, 1] are candidates for an equilibrium. So if α > 4 then none of the values of
δ ∈ (δ(α), δ(α)) are candidates for an equilibrium.

Costs of manipulation, c 6= 1. Now consider the politician’s best response δ(k; c) parameterized by
c 6= 1 and suppose α > 4. When c 6= 1, the politician’s objective depends on δ over the entire support
k ∈ [0,min(c, 1)]. From Proposition 1, there is a unique intersection between the politician’s and the citizens’
best responses. As illustrated below, if c < 1 the politician’s best response δ(k; c < 1) lies above δ(k; 1) =
k/(1 + k) and hence the equilibrium point k∗, δ∗ must be on the “upper branch” of k(δ;α) where δ∗ > δ(α).
But for the same value of α and instead c > 1 the equilibrium point k∗, δ∗ must be on the “lower branch” of
k(δ;α) where δ∗ < δ(α) because the politician’s best response δ(k; c > 1) lies below δ(k; 1) = k/(1 + k).

0 1
0

δ(α)

0.5

δ(α)

1

α < 1 α > 4

c = 1− ε

c = 1 + ε

response coefficient, k

m
an

ip
ul

at
io

n
co

effi
ci

en
t,
δ

0 1

manipulation δ∗

α > 4

α > 4

cost of manipulation, c

Discontinuity at c = 1 and jump in the amount of manipulation δ∗

The left panel shows the citizens’ best response k(δ;α) for α < 1, α = 4 and α > 4 (blue) and the politician’s best response
δ(k; c) for c = 1 − ε, c = 1, and c = 1 + ε (red). For α > 4, in the limit as c → 1− the equilibrium is at k∗ = 1, δ∗ = δ(α)
but in the limit as c → 1+ the equilibrium is at k∗ = 1, δ∗ = δ(α). For α > 4 and c = 1 exactly both of these are equilibria
because for this knife-edge special case the politician is indifferent between δ(α) and δ(α). The right panel shows the equilibrium
manipulation δ∗ as a function of c for α < 1, α = 4 and α > 4. For α ≤ 4, the manipulation δ∗ is continuous in c. But for α > 4
the manipulation jumps discontinuously at c = 1. In the limit as α→∞ the boundaries δ(α)→ 0+ and δ(α)→ 1+ so that the
manipulation jumps by the maximum possible amount, from δ∗ = 0 if c < 1 to δ∗ = 1 if c > 1.

Summary. In brief, when α > 4 for each c < 1 the equilibrium δ∗ > δ(α) with δ∗ → δ(α) from above as
c→ 1− and for each c > 1 the equilibrium δ∗ < δ(α) with δ∗ → δ(α) from below as c→ 1+.

Knife-edge case. Now consider the case c = 1 exactly. The key part of the politician’s objective becomes

B(δ, k)− C(δ) = (k2 − 1)δ2 + 2k(1− k)δ + (1− k)2 (G3)

When k 6= 1, the politician’s best response is δ(k; 1) = k/(1 + k), which is increasing in k and approaches
1/2 as k → 1. But when k = 1, the politician’s objective is independent of δ and in turn the politician is
indifferent in the choice of δ. The equilibrium (k∗ = 1, δ∗) is thus entirely determined by the citizens’ best
response. If α < 4, the citizens’ best response k(δ;α) < 1 so that k∗ = 1 is never an equilibrium. If α = 4,
there is a unique equilibrium determined by the maximum of the citizens’ best response (k∗ = 1, δ∗ = 1/2).
If α > 4, there are two equilibria corresponding to the two roots of k(δ;α) = 1: namely (k∗ = 1, δ∗ = δ(α))
and (k∗ = 1, δ∗ = δ(α)).
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Further intuition for large changes in manipulation near c = 1. Now consider the sensitivity of the
equilibrium amount of manipulation to changes in c near c = 1. Recall that, taking the citizens’ k as given,
the politician chooses manipulation δ to maximize

V (δ, k) =
1

αz
(B(δ, k)− C(δ)) +

1

αx
k2 (G4)

with benefit B(δ, k) = (kδ + 1− k)2 and costs of manipulation C(δ) = cδ2.
Now consider an environment where the citizens are inclined to be very responsive to their signals, α→∞

so that k → min(c, 1). First, suppose that c > 1 so that k → 1. Then the relevant part of the politician’s
objective simplifies to

B(δ, 1)− C(δ) = (1− c)δ2 (G5)

so that for any c > 1 the politician will choose δ = 0. Next, suppose instead that c < 1 so that k → c. In
this case the relevant part of the politician’s objective simplifies to

B(δ, c)− C(δ) = −c(1− c)δ2 + 2c(1− c)δ + (1− c)2 (G6)

so that for any c < 1 the politician will choose δ = 1. In short, as α→∞, the politician’s manipulation is a
step function in c, with δ = 1 for all c < 1 and δ = 0 for all c > 1.

What is the meaning of c = 1? So given that the amount of manipulation can be extremely sensitive to c

near c = 1, what does c = 1 mean? Recall that in the politician’s objective (5) the gross benefit
∫ 1

0
(ai−θ)2 di

has a coefficient normalized to 1. If instead we had written the objective with b
∫ 1

0
(ai− θ)2 di for some b > 0

then throughout the analysis the relevant parameter would be the cost/benefit ratio c/b and the critical
point would be where the cost/benefit ratio is c/b = 1. In this parameterization, the politician’s equilibrium
manipulation is extremely sensitive to changes in either c or b in the vicinity of c/b = 1. With α high and
costs and benefits evenly poised, a small decrease in b or small increase in c would lead to a large reduction
in manipulation.

H Coefficients sum to one

In this appendix we show that writing the citizens’ linear strategy as ai = kxi + (1 − k)z is without loss of
generality. Suppose that the citizens’ linear strategy is

ai = β0 + β1xi + β2z

for some coefficients β0, β1, β2. We will show that in any linear equilibrium β0 = 0 and β1 + β2 = 1.
The politician’s problem is then to choose y to maximize

V (y) =

∫ 1

0

(β0 + β1(y + εi) + β2z − θ)2 di− c(y − θ)2

= (β0 + β1y + β2z − θ)2 +
1

αx
β2
1 − c(y − θ)2

The solution to this problem is
y = γ0 + γ1θ + γ2z

where

γ0 =
β0β1
c− β2

1

(H1)

γ1 =
c− β1
c− β2

1

(H2)

γ2 =
β1β2
c− β2

1

(H3)
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But if the politician has the strategy y = γ0 + γ1θ + γ2z, the citizens’ posterior expectation of θ, and
hence their action ai, is given by

ai = E[θ |xi] =
γ1αx

γ21αx + αz

(
1

γ1
(xi − γ2z)−

γ0
γ1

)
+

αz
γ21αx + αz

z

=
γ1αx

γ21αx + αz
xi +

αz − γ1αxγ2
γ21αx + αz

z − γ1αx
γ21αx + αz

γ0

Matching coefficients with ai = β0 + β1xi + β2z we then have

β0 = − γ1αx
γ21αx + αz

γ0 (H4)

β1 =
γ1αx

γ21αx + αz
(H5)

β2 =
αz − γ1αxγ2
γ21αx + αz

(H6)

First observe that equations (H1) and (H4) together imply that the intercepts are β0 = γ0 = 0. Then
observe from (H2)-(H3) and (H5)-(H6) that γ1 + γ2 = 1 implies β1 + β2 = 1 and vice-versa. So indeed the
citizens’ strategy takes the form ai = kxi + (1 − k)z where k = β1 and the politician’s strategy takes the
form y = (1− δ)θ + δz where δ = γ2. Hence from (H3) and (H5) we can write

δ =
k − k2
c− k2 , k =

(1− δ)α
(1− δ)2α+ 1

where α := αx/αz. These are the same as the best response formulas equations (??) and (??) in the main
text and from Proposition 1 we know that there is a unique pair k∗, δ∗ satisfying these conditions.
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