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series, any evidence of GARCH effects disappears. We also produce rolling out-of-
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1 Introduction

Recently, there has been an upsurge of interest in the possibility of confusing long-memory

with structural change in levels. This idea extends that exposited by Perron (1989, 1990)

who showed that structural change and unit roots are easily confused: when a stationary

process is contaminated by structural change, the estimate of the sum of its autoregressive

coefficients is biased towards 1 and tests of the null hypothesis of a unit root are biased toward

non-rejection. This phenomenon has been shown to apply to the long-memory context as

well. That is, when a stationary short-memory process is contaminated by structural change

in levels, the estimate of the long-memory parameter d is biased away from 0 and the

autocovariance function of the process exhibits a slow rate of decay. Relevant references on

this issue include Diebold and Inoue (2001), Engle and Smith (1999), Gourieroux and Jasiak

(2001), Granger and Ding (1996), Granger and Hyung (2004), Lobato and Savin (1998),

Mikosch and Stărică (2004), Parke (1999) and Teverosovky and Taqqu (1997).

The literature on modeling and forecasting stock return volatility is voluminous. Two

approaches that have proven useful are the GARCH and stochastic volatility (SV) models1.

In their standard forms, the ensuing volatility processes are stationary and weakly dependent

with autocorrelations that decrease exponentially. This contrasts with the empirical findings

obtained using various proxies for volatility (e.g., daily absolute returns) which indicate

autocorrelations that decay very slowly at long lags. In light of this, several long-memory

models have been proposed. For example, Baillie, Bollerslev and Mikkelsen (1996) and

Bollerslev and Mikkelsen (1996) considered fractionally integrated GARCH and EGARCH

models, while Breidt, Crato and De Lima (1998) and Harvey (1998) proposed long memory

SV (LSV) models where the log of volatility is modelled as a fractionally integrated process.

More recently, attempts have been made to distinguish between stationary noise plus

level shift and long-memory models; see, in particular, Granger and Hyung (2004). They

documented the fact that, when breaks determined via some pre tests are accounted for,

the evidence for long-memory is weaker. This evidence is, however, inconclusive since struc-

tural change tests are severely biased in the presence of long-memory and log periodogram

estimates of the memory parameter are biased downward when sample-selected breaks are

introduced. This is an overfitting problem that Granger and Hyung (2004, p. 416) clearly

recognized. Stărică and Granger (2005) presented evidence that log-absolute returns of the

S&P 500 index is an i.i.d. series affected by occasional shift in the unconditional variance

1For extensive reviews and collected works, see Engle (1995) and Shephard (2005).
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and show that this specification has better forecasting performance than the more traditional

GARCH(1,1) model and its fractionally integrated counterpart. Mikosch and Stărică (2005)

considered the autocorrelation function of the absolute returns of the S&P 500 index for

the period 1953-1977. They documented the fact that for the full period, it resembles that

of a long-memory process. But, interestingly, if one omits the last fours years of data, the

autocorrelation function is very different and looks like one associated with a short-memory

process. They explain this finding by arguing that the volatility of the S&P 500 returns has

increased over the period 1973-1977. Morana and Beltratti (2004) also argue that breaks in

the level of volatility partially explain the long-memory features of some exchange rate series.

Perron and Qu (2007) analyzed the time and spectral domain properties of a stationary short

memory process affected by random level shifts. Perron and Qu (2008) showed that, when

applied to daily S&P 500 absolute returns, their square roots and log absolute returns over

the period 1928-2002, the level shift model explains both the shape of the autocorrelations

and the path of log periodogram estimates as a function of the number of frequency ordi-

nates used. Qu and Perron (2008) estimated a stochastic volatility model with level shifts

using a Bayesian approach using daily data on returns from the S&P 500 and NASDAQ

indices over the period 1980.1-2005.12. They showed that the level shifts account for most

of the variation in volatility, that their model provides a better in-sample fit than alternative

models and that its forecasting performance is better for the NASDAQ and just as good for

the S&P 500 as standard short or long-memory models without level shifts.

Our approach extends the work of Stărică and Granger (2005) by directly estimating a

structural model. We adopt a specification for which the series of interest is the sum of a

short-memory process and a jump or level shift component. For the latter, we specify a

simple mixture model such that the component is the cumulative sum of a process which is 0

with some probability (1−α) and is a random variable with probability α. To estimate such
a model, we transform it into a linear state space form with innovations having a mixture

of two normal distributions and adopt an algorithm similar to the one used by Perron and

Wada (2009) and Wada and Perron (2007). We restrict the variance of one of the two normal

distributions to be zero, allowing us to achieve a simple but efficient algorithm.

We apply this random level shift model to the logarithm of absolute returns for the

following stock market return indices: S&P 500 (1962/07/03 to 2004/03/25; 10504 observa-

tions), AMEX (1962/07/03 to 2006/12/31; 11201 observations), Dow Jones (1957/03/04 to

2002/10/30; 11534 observations) and NASDAQ (1972/12/15 to 2006/12/31; 8592 observa-

tions). Our point estimates imply few level shifts for all series. But once these are taken
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into account, there is little evidence of serial correlation in the remaining noise and, hence,

no evidence of long-memory. Furthermore, once the estimated shifts are introduced to a

standard GARCH model, any evidence of GARCH effects disappears. We also produce re-

cursive out-of-sample forecasts of squared returns. In most cases, our simple random level

shifts model clearly outperforms a standard GARCH(1,1) model and, in many cases, it also

provides better forecasts than a fractionally integrated GARCH model.

A few comments on our modeling and forecasting strategy are in order. A main goal is to

provide forecasts of volatility proxied by daily squared returns. We however, apply our level

shift model to log-absolute returns since they do not suffer from a non-negativity constraint

as do, say, absolute or squared returns. There is also no loss relative to using squared returns

in identifying level shift since log-absolute returns are a monotonic transformation. Since

we wish to identify the probability of shifts and their locations, the fact that log-absolute

returns are quite noisy is not problematic since our methods are robust to the presence of

noise. Another reason is the fact that for many asset returns, a log-absolute transformation

yields a series that is closer to being normally distributed (see, e.g., Andersen, Bollerslev,

Diebold and Labys, 2001). A second comment of interest is the fact we use daily returns as

opposed to realized volatility series constructed from intra-daily high frequency data which

has recently become popular. While realized volatility series are a less noisy measure of

volatility than daily squared returns, their use in our context is problematic. First, such

series are typically available for a short time span. Given the fact that level shifts will turn

out to be relatively rare, it is imperative to have a long span of data available to obtain

reliable estimates of the probability of occurrence of level shifts. Secondly, such series are

available only for specific assets, as opposed to market indices. In our framework, the intent

of the level shift model is to have a framework which allows for special events affecting

overall markets. Using data on a specific asset would confound such market-wide events

with idiosyncratic ones associated with the particular asset used. Finally, we wish to re-

evaluate the adequacy of GARCH models applied to daily returns when taking into account

the possibility of level shifts. Hence, it is important to have estimates of these level shifts

for squared daily returns which are equivalent to those obtained using log-absolute returns.

The structure of the paper is as follows. Section 2 presents the model and the specifi-

cations adopted. Section 3 discusses the estimation procedure while the estimation results

and various diagnostics are presented in Section 4. The forecasting comparisons between our

model and GARCH and FIGARCH models are reported in Section 5. Section 6 offers brief

conclusions.
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2 The model

The model we apply to log-absolute returns is given by

yt = a+ τ t + ct, (1)

where a is a constant, τ t is the random level shift components and ct is a short-memory

process, included to model the remaining noise. The level shift component is specified by

τ t = τ t−1 + δt,

where

δt = πtηt.

Here, πt is a binomial variable that takes value 1 with probability α and value 0 with

probability (1 − α). If it takes value 1, then a random level shift ηt occurs, specified by

ηt ∼ i.i.d. N(0, σ2η).

In its most general form, the short-memory process ct is defined by ct = C (L) et, with

et ∼ i.i.d. N (0, σ2e) and E |et|r < ∞ for some r > 2. The polynomial C (L) satisfies

C (L) =
P∞

i=0 ciL
i,
P∞

i=0 i |ci| <∞ and C (1) 6= 0. These conditions allow us to approximate
the process by a finite order autoregression, provided its order is chosen suitably. As we shall

see, once the level shifts are accounted for, very little autocorrelation remains in the process

so that an AR(1) specification of the short-memory component is sufficient. Even then, the

autoregressive parameter estimate will be small and insignificant. Hence, in what follows,

we shall for simplicity assume that

ct = φct−1 + et,

understanding that our method of estimation can easily be extended to cover more general

processes with straightforward modifications. We also assume that the components πt, ηt
and ct are mutually independent. The normality assumption for et is needed to construct

the likelihood function, though the parameter estimates remain consistent without it.

It is easy to confuse this model with the popular Markov regime switching model (e.g., see

Hamilton 1989) since τ t can be interpreted as a latent regime variable. The two models share

the feature of allowing the time series to follow different processes over different subsamples.

But there is a key distinction that allows our model to have more flexibility. In the standard

Markov regime switching model, only a finite number of possible regimes, usually two or some

other small value, are allowed (see, for example, Hamilton 1989, Gray 1996 and Filardo
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and Gordon 1998). In contrast, our model does not restrict the magnitude of the level

shifts since they are draws from a normal distribution. Hence, any number of regimes is

possible. It is also important to note that the probability that πt be 0 or 1 is independent of

past realizations, unlike the Markov switching type models. Here, the different regimes are

associated with different magnitudes of the shifts. Our goal is to develop a framework which

allows for special events. Hence, the probability that a shift occurs should be independent of

past shifts. Accordingly, it is appropriate to make the probability of being in a given regime

as independent of past realizations.

In order to estimate the model, we shall embed it in a state space framework involving

errors that have a mixture of two normal distributions. The level shift component τ t can be

specified as a random walk process with innovations distributed according to a mixture of

two normally distributed processes:

τ t = τ t−1 + δt,

δt = πtη1t + (1− πt) η2t,

where ηit ∼ i.i.d. N(0, σ2ηi) and πt is a Bernoulli random variable that takes value one with

probability α and value 0 with probability 1 − α. By specifying σ2η1 = σ2η and σ2η2 = 0, we

recover our level shift model.

We next specify the model in terms of first-differences of the data:

∆yt = τ t − τ t−1 + ct − ct−1 = δt + ct − ct−1,

where

δt = πtη1t + (1− πt) η2t.

We then have the following state space form:

∆yt = ct − ct−1 + δt,

ct = φct−1 + et,

or more generally,

∆yt = HXt + δt,

Xt = FXt−1 + Ut,

where, in the case of an AR(p) process,

Xt = [ct, ct−1, ..., ct−p−1]0,

5



F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 ... φp

1

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H = [1,−1, 0, ..., 0] and Ut is a p-dimensional normally distributed random vector with mean

zero and covariance matrix

Q =

⎛⎝ σ2e 01×(p−1)

0(p−1)×1 0(p−1)×(p−1)

⎞⎠ .

The important difference between this model and a standard state space model is that the

distribution of δt is a mixture of two normal distributions with variances σ2η and 0, occurring

with probabilities α and 1 − α, respectively. Note that it is also easy to extend our model

to have the short-memory component ct follow an ARMA process as long as ct can be

represented in a state space form.

3 The estimation method

The model described in the previous section is a special case of the class of models considered

by Wada and Perron (2007). They modeled the trend-cycle decomposition of a macroeco-

nomic time series allowing for mixtures of normal distributions for the shocks affecting the

level, slope and cyclical components. Here, we only have shocks affecting the level of the

series and we simply need to impose the restriction that the variance of one component of

the mixture of normal distributions is zero. In what follows, we provide a brief description

of the method, more details can be found in Wada and Perron (2007).

The first thing to note is that despite their fundamental differences, our model and the

Markov regime switching models share similarities in estimation methodology. The basic

ingredient for estimation is the augmentation of the states by the realizations of the mixture

at time t so that the Kalman filter can be used to generate the likelihood function, conditional

on the realizations of the states. The latent states are eliminated from the final likelihood

expression by summing over all possible state realizations. As we shall show, our model takes

a structure that is similar to a version of the Markov regime switching model.

Let Yt = (∆y1, ...,∆yt) be the vector of data available up to time t and denote the

vector of parameters by θ = [σ2η, α, σ
2
e, φ1, ..., φq]. To illustrate the similarities we adopt
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the notations in Hamilton (1994), where 1 represents a (4× 1) vector of ones, the symbol
¯ denotes element-by-element multiplication, ξ̂t|t−1 = vec(eξt|t−1) with the (i, j)th element
of eξt|t−1 being Pr (st−1 = i, st = j|Yt−1; θ) and ωt = vec (eωt) with the (i, j)th element of eωt

being f (∆yt|st−1 = i, st = j, Yt−1; θ) for i, j ∈ {1, 2}. Here st = 1 (resp., 0) when πt = 1

(resp., 0), i.e., a level shift occurs (resp., does not occur). The log likelihood function is

ln(L) =
TX
t=1

ln f (∆yt|Yt−1; θ) , (2)

where

f (∆yt|Yt−1; θ) =
2X

i=1

2X
j=1

f (∆yt|st−1 = i, st = j, Yt−1; θ) Pr (st−1 = i, st = j|Yt−1; θ) (3)

≡ 10
³
ξ̂t|t−1 ¯ωt

´
.

We first focus on the evolution of ξ̂t|t−1. Applying rules for conditional probabilities, Bayes’

rule and the independence of st with past realizations, we have

eξijt|t−1 ≡ Pr (st−1 = i, st = j|Yt−1; θ)

= Pr (st = j)
2X

k=1

Pr (st−2 = k, st−1 = i|Yt−1; θ) ,

and

eξkit−1|t−1 ≡ Pr (st−2 = k, st−1 = i|Yt−1; θ)
=

f (∆yt−1|st−2 = k, st−1 = i, Yt−2; θ) Pr (st−2 = k, st−1 = i|Yt−2; θ)
f (∆yt−1|Yt−2; θ) .

Therefore, the evolution of ξ̂t|t−1 is given by:⎡⎢⎢⎢⎢⎢⎢⎣
eξ11t+1|teξ21t+1|teξ12t+1|teξ22t+1|t

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

α
³eξ11t|t + eξ21t|t´

α
³eξ12t|t + eξ22t|t´

(1− α)
³eξ11t|t + eξ21t|t´

(1− α)
³eξ12t|t + eξ22t|t´

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
α α 0 0

0 0 α α

(1− α) (1− α) 0 0

0 0 (1− α) (1− α)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
eξ11t|teξ21t|teξ12t|teξ22t|t

⎤⎥⎥⎥⎥⎥⎥⎦ .

or more compactly by:

ξ̂t+1|t = Πξ̂t|t, (4)
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with

ξ̂t|t =
ξ̂t|t−1 ¯ ωt

10(ξ̂t|t−1 ¯ωt)
.

The conditional likelihood for ∆yt is the following Normal density:

eωij
t = f (∆yt|st−1 = i, st = j, Yt−1; θ) =

1√
2π

¯̄
f ijt
¯̄− 1

2 exp

(
−υ

ij0
t

¡
f ijt
¢−1

υijt
2

)
, (5)

where υijt = ∆yt −∆yit|t−1 is the prediction error and f ijt = E(υijt υ
ij0
t ) is the prediction error

variance. Note that ∆yit|t−1 = E[∆yt|st−1 = i, Yt−1; θ] does not depend on the state j at time

t because we are conditioning on time t−1 information. However, ∆yt does depend on st = j

so that the prediction error and its variance depend on both i and j. The best forecast for

the state variable and its associated variance conditional on past information and st−1 = i

are

X i
t|t−1 = FX i

t−1|t−1, (6)

P i
t|t−1 = FP i

t−1|t−1F
0 +Q.

We have the measurement equation ∆yt = HXt + δt, where the measurement error δt has

mean zero and a variance which can take two possible values: R1 = σ2η, with probability α,

or R2 = 0, with probability 1− α. Hence, the prediction error is υijt = ∆yt −HXi
t|t−1 with

associated variance f ijt = HP i
t|t−1H

0 + Rj. Applying standard updating formulae, we have

given st = j and st−1 = i,

Xij
t|t = Xi

t|t−1 + P i
t|t−1H

0 ¡HP i
t|t−1H

0 +Rj

¢−1 ¡
∆yt −HXi

t|t−1
¢
, (7)

P ij
t|t = P i

t|t−1 − P i
t|t−1H

0 ¡HP i
t|t−1H

0 +Rj

¢−1
HP i

t|t−1.

To reduce the dimension of the estimation problem, we adopt the re-collapsing procedure

suggested by Harrison and Stevens (1976), given by

Xj
t|t =

P2
i=1 Pr (st−1 = i, st = j|Yt; θ)Xij

t|t
Pr (st = j|Yt; θ) =

P2
i=1
eξijt|tXij

t|tP2
i=1
eξijt|t , (8)

P j
t|t =

P2
i=1 Pr (st−1 = i, st = j|Yt; θ)

∙
P ij
t|t +

³
Xj

t|t −X ij
t|t
´³

Xj
t|t −Xij

t|t
´0¸

Pr (st = j|Yt; θ)

=

P2
i=1
eξijt|t ∙P ij

t|t +
³
Xj

t|t −Xij
t|t
´³

Xj
t|t −X ij

t|t
´0¸

P2
i=1
eξijt|t .
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By doing so, we make ωij
t unaffected by the history of states before time t− 1.

If we define St ≡ (st, st−1), we then have four possible states corresponding to St = 1

when (st = 1, st−1 = 1), St = 2 when (st = 1, st−1 = 2), St = 3 when (st = 2, st−1 = 1) and

St = 4 when (st = 2, st−1 = 2) with the transition matrix Π as defined in (4). The vector of

conditional densities ωt = (ω
1
t , ...,ω

4
t ) thus have a more compact representation given by:

ωc
t = f (∆yt|St = c, Yt−1; θ) =

1√
2π

¯̄
f ct
¯̄−1

2 exp

(
−υ

c0
t

¡
f ct
¢−1

υct
2

)
(9)

where υct and f ct are as defined in (5) with the values of st and st−1 corresponding to St = c.

This definition of ωt, together with ξ̂t|t and ξ̂t+1|t, the collection of conditional probabilities

Pr (St = c|Yt; θ) for c = 1, ..., 4 and its the one-period ahead forecasts, evolving as in (4), give
us the same structure as a version of the Markov regime switching model used by Hamilton

(1994). However, there are two extra complexities here. Firstly, the mean and variance in

the conditional density function are nonlinear functions of the fundamental parameters θ

and past realizations {∆yt−j; j ≥ 1}. This non-linearity and time dependence complicate
the maximization of the log-likelihood function since we cannot separate out some elements

of θ in the first order conditions. Accordingly, the standard EM algorithm does not apply.

Secondly, the conditional probability of being in a given regime ξ̂t|t is not separable from the

conditional densities ωt since eξijt|t enters in its construction (see (8)).
4 Empirical results for returns on stock market indices

In this section, we apply our model and estimation method to the returns of four major

market indices: the S&P 500, AMEX, Dow Jones and NASDAQ. The daily returns are

computed by first differencing the logarithm of the index price series rt = ln (Pt)− ln (Pt−1).

The data coverage is from 1962/07/03 to 2004/03/25 for the S&P 500 (10504 observations),

from 1962/07/03 to 2006/12/31 for the AMEX (11201 observations), from 1957/03/04 to

2002/10/30 for the Dow Jones (11534 observations) and from 1972/12/15 to 2006/12/31 for

the NASDAQ (8592 observations). For reasons stated in the introduction, we model log

absolute returns. When returns are zero or close to it, the log absolute value transformation

implies extreme negative values. Using our method, these outliers would be attributed to

the level shift component and thus bias the probability of shifts upward. To avoid this

problem, we bound absolute returns away from zero by adding a small constant, i.e., we

use log (|rt|+ 0.001), a technique introduced to the stochastic volatility literature by Fuller
(1996). The results are robust to alternative specifications, for example using another value
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for this so-called offset parameter, deleting the zero observations, or replacing them by a

small value.

To specify the short-memory component ct, we start by setting ct = et, following Stărică

and Granger (2005) who report that the short-memory component in such series is just white

noise. As a robustness check, we also report the estimates for the specification that ct follows

an AR(1) process, ct = φct−1 + et. Since all components of the state vector are stationary,

we can initialize the state vector and its covariance matrix by their unconditional expected

values, i.e., X0|0 = (0, 0)0 and

P0|0 =

⎡⎣ σ2e 0

0 0

⎤⎦ .
We obtain estimates by directly maximizing the likelihood function (2). In order to avoid

the problem of local maxima, we re-estimate with different initial values of θ0 and pick the

estimates associated with the largest likelihood value upon convergence.

4.1 Estimation results

The parameter estimates are presented in Table 1 for both the cases in which the short-

memory component ct is specified to be white noise and an AR(1) process. To assess the

relative importance of the two components to the total variation of the series, we also report

the standard deviation of the original series log |rt|. The estimates reported are the standard
deviation of level shift component ση, the probability of a shift α, the standard deviation

of the stationary component σe and the autoregressive coefficient φ when considering the

AR(1) specification for ct.

There results exhibit noteworthy features. First, when considering the AR(1) specifica-

tion for ct, the estimate of φ is very small and close to zero, except for the AMEX series

for which it is the largest but still only 0.063. In all cases, adopting either an AR(1) or

white noise specification for ct yields very similar results (there are some slight differences

for the AMEX series but the subsequent results to be discussed here are unaffected by the

specification of ct). Thus in subsequent sections we shall only consider results based on the

white noise specification for the short-memory component. These results are in agreement

with those of Stărică and Granger (2005).

The second noteworthy feature is the fact that the probability of level shifts is very small

in all cases considered. Indeed, the point estimates of α imply the following number of shifts

for each index: 15 for the S&P 500, 28 for the AMEX, 12 for the Dow Jones and 7 for the
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NASDAQ. However, the shifts are important given that their standard deviation is of the

same order as the standard deviation of the series. Nevertheless, given that the shifts occur

so infrequently, the noise component accounts for the bulk of total variation.

4.2 The effect of level shifts on long-memory and conditional heteroskedasticity

Given the features documented above, it would be interesting to determine whether the

level shifts are important to dictating the overall behavior of the series. We shall address

this issue by investigating whether the shifts can explain a) the well-documented feature of

long-memory and b) the presence of conditional heteroskedasticity.

To do so we need estimates of the dates at which the level shifts occur as well as the

means within each segment. Ideally, one would use a smoothed estimate of the level shift

component τ t. However, in this context of multiple abrupt changes, conventional smoothers

perform very poorly as we shall see. Hence, we also resort to using the following strategy.

We use the point estimate of α to obtain a point estimate of the number of changes, as

reported above. We then apply the method of Bai and Perron (2003) to obtain the estimates

of the break dates that globally minimize the following sum of squared residuals:

m+1X
i=1

TiX
t=Ti−1+1

[yt − μi]
2,

where m is the number of breaks, Ti (i = 1, ...,m) are the break dates with T0 = 0 and

Tm+1 = T and μi (i = 1, ...,m + 1) are the means within each regime which can easily be

estimated once the break dates are. This method is efficient and can easily handle the large

number of observations we are using, even with as many as 28 breaks (see Bai and Perron,

2003 for more details). Note that since our model allows for consecutive level shifts, we set

the minimal length of a segment to just one observation. The fitted level shift component

obtained using this method is presented in Figure 1 along with the original series log |rt| and
the smoothed estimate of the level shift component obtained using the smoothing method

described in Wada and Perron (2007). As can be seen, the smoothed estimates are quite

erratic, though they generally follows the overall changing mean of the series as depicted

using the method of Bai and Perron (2003). This highlights the advantage of using this

latter method since it delivers estimates of the level shift component that are consistent

with the model postulated. A look at the graph indicates that the shifts agree with the

major changes in the scale of log |rt| and, as expected, there is a brief but important shift in
October 1987 for all series.
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The first issue we address is whether the level shift can account for the long-memory

feature of the series log |rt|. To do so, we plot the autocorrelation functions (up to 300 lags)
of the original series log |rt| and its short-memory component ct, obtained by subtracting the
fitted trend from log |rt|. We do so using the trend obtained using the smoothed estimate of
the level shift component and that obtained using the algorithm of Bai and Perron (2003).

The results are presented in Figure 2. One can see that for all cases, the log-absolute returns

clearly display an autocorrelation function that resembles that of a long-memory process: it

decays very slowly and the values remain important even at lag 300. On the other hand,

once the level shifts are accounted for, the picture is completely different and there is barely

any evidence of remaining correlation, consistent with the estimate of φ obtained above.

Given that we have ten thousands or so observations for each series, the autocorrelations

at small lags may be deemed significant but they have no practical importance given their

small values. Hence, for all practical purposes, we can view the short-memory component

as being nearly white noise. These results are quite impressive. Despite the fact that the

shifts are rare and account for only a small portion of the total variation of the series, they

account for (nearly) all of the autocorrelation present in log-absolute returns.

It is almost universally accepted that stock returns exhibit conditional heteroskedasticity.

For that reason, the GARCH(1,1) model, introduced by Bollerslev (1986) following the work

of Engle (1982), has been used widely to model returns and is generally perceived as one

of the leading candidates of forecasting models. Though Lamoureux and Lastrapes (1990)

documented that structural changes in the level of variance can amplify the evidence of

conditional heteroskedasticity, no strong evidence has been previously presented on assessing

whether accounting for such changes can completely eliminate all evidence of conditional

heteroskedasticity. We shall present evidence to this effect.

To account for the fat-tailed distribution of returns, the most popular model is the

GARCH(1,1) model with Student-t errors given by, for the demeaned returns process ert,
ert = σtεt, (10)

σ2t = μ+ βrer2t−1 + βσσ
2
t−1,

where εt is i.i.d Student-t distributed with mean 0 and variance 1. The parameters of interest

are βr and βσ, which measure the extent of conditional heteroskedasticity present in the data.

As is standard, we let the degrees of freedom of the Student-t distribution be an unknown

parameter, estimated jointly with the others. We estimate such a model for the four returns

indices using maximum likelihood. We also consider the case that accounts for level shifts
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at the dates documented in the fitted level shift component, as presented of Figure 1. This

implies the following extended specification, sometimes referred to as a components GARCH

model:

ert = σtεt,

nt = μ+ ρ (nt−1 − μ) + φ
¡er2t−1 − σ2t−1

¢
+

m+1X
i=2

Di,tγi, (11)¡
σ2t − nt

¢
= βr

¡er2t−1 − nt−1
¢
+ βσ

¡
σ2t−1 − nt−1

¢
,

where Di,t = 1 if t is in regime i, i.e., t ∈ {Ti−1 + 1, ..., Ti}, and 0 otherwise, with Ti

(i = 1, ...,m) being the break dates documented in Figure 1 (again T0 = 0 and Tm+1 = T ).

The coefficients γi, which index the magnitude of the shifts, are treated as unknown and are

estimated with the remaining parameters, while the number of breaks is obtained from the

point estimate of α. The estimates of βr and βσ obtained from the standard GARCH(1,1)

model (10) and the extended model (11) that allows for level shifts are presented in Table 2.

The results are quite informative. Using the standard GARCH(1,1) model, both estimates

are highly significant for all series. In particular, the value of βσ is quite high, as often doc-

umented, with values ranging between 0.866 and 0.935. We also estimated the components

GARCH model without level shifts and the results are similar for the estimates of βr and

βσ. The estimates of ρ are very close to one. This is due to the fact that the model attempts

to capture features akin to long memory so that a value of ρ close to one implies highly

persistent shocks.

The picture is very different when we allow for level shifts. None of the estimates of

βσ are significant, with small values ranging from -0.045 to 0.151. The estimate of βr is

insignificant for the S&P 500 and Dow Jones series. It is significant with p-values close

to 0.01 for the AMEX and NASDAQ series, though the point estimates are much smaller

(0.05 for both) so that their economic importance is minor. Also of interest is the fact that

with level shifts the estimates of ρ are now well below one, between 0.85 and 0.95, implying

that shocks have a half life between between 4 and 13 days. Hence, introducing few level

shifts imply a markedly different interpretation of the data. These results indicate that level

shifts in log-absolute or squared returns account for nearly all of the documented evidence

of conditional heteroskedasticity in these stock returns series. They also imply that shock

to volatility have very little persistence.

We also assessed the sensitivity of the results using the smoothed estimate of the trend

function. This is done by replacing the term
Pm+1

i=2 Di,tγi by the smoothed estimate of the
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level shift component. The results are qualitatively similar, though it must be noted that, in

this case, the estimates of the parameters are quite sensitive to minor changes in the sample

used.

To summarize the results so far, the level shifts model with white noise errors appears to

provide an accurate description of the data. The level shift component is an important feature

that explains both the long-memory and conditional heteroskedasticity features generally

perceived as stylized facts. Our analysis so far is retrospective and one may rightfully

raise the issue of data overfitting as an explanation of the results, especially when multiple

structural changes are present. It remains therefore to see whether our level shift model

provides reasonable forecasts in comparison to traditional models.

5 Forecasting

We now consider the performance of the level shift model with white noise errors for log-

absolute returns in forecasting volatility proxied by squared returns relative to two pop-

ular models: the GARCH(1,1) model and its fractionally integrated counterpart, the FI-

GARCH(1,1) model. Given that the smoothed estimates of the level shift components are

erratic and not in accord with the postulated model, we shall henceforth not use them. The

design of the forecasting experiment follows Stărică and Granger (2005). We start forecast-

ing at observations 2,000. We re-estimate the models every 20 days, at which point forecasts

of up to 200 days are constructed. The proxy for volatility being the realized squared re-

turns are quite noisy, and to reduce the effect of sampling variability, we follow Stărică and

Granger (2005) in the construction of a metric to gauge relative performance. Let σ̂2t,p be a

p-step ahead forecast of σ2t+p, the variance of returns rt at time t+p, proxied by the squared

demeaned returns. Let n be the number of forecasts produced, then the estimated MSE is

constructed as

MSE(p) =
1

n

nX
t=1

¡
r̄2t,p − σ2t,p

¢2
, (12)

where σ2t,p =
Pp

k=1 σ̂
2
t+k and r̄2t,p =

Pp
k=1 r

2
t+k is the realized volatility over the interval

[t + 1, t + p]. This estimate of the MSE is preferable to the simpler version
Pn

t=1(r
2
t+p −

σ̂2t+p)
2, because the latter uses a poor measure of realized return volatility (see Anderson

and Bollerslev, 1998). Through averaging, some of the idiosyncratic noise in the high-

frequency component of squared returns is canceled out. Throughout, the relative forecasting

performance of the two models is evaluated by the ratio of their MSEs as defined above.
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5.1 Construction of the forecasts

We now describe how the forecasts are constructed for each method. We start with the

level shift model applied to log-absolute returns for which we assume, following the evidence

documented above, a short-memory component that is simply white noise. Since our model

and estimates pertain to log-absolute returns, we need an appropriate transformation that

yields forecasts of the variance of returns. Recall that our model specifies the following

process for log absolute returns 2:

log (|rt|+ C) = τ t + ct,

where C is a positive constant used to bound returns away from zero. This yields the

following model for returns:

|rt|+ C = h
1/2
t eεt,

where ht = e2τ tE(e2ct) and eεt = ect/[E (e2ct)]1/2 so that Eeε2t = 1 and eεt is independent of
ht. The sequence eεt is also i.i.d., given that ct = et. Hence, 2ct ∼ i.i.d. N(0, 4σ2e) and

E(e2ct) = e0+4σ
2
e/2 = e2σ

2
e . Since the level shifts are rare and there is considerable uncertainty

about their timing and magnitudes, we ignore them when forecasting. We then have,

Et (|rt+k|+ C)2 = Etht+k = exp(2τ t + 2σ
2
e),

so that the k-period ahead forecast of the squared returns r2t+k is

Etr
2
t+k = exp(2τ t + 2σ

2
e)− 2CEt |rt+k|− C2,

where

Et |rt+k| = Et exp (τ t + ct+k)− C = exp
¡
τ t + 0.5σ

2
e

¢− C.

We now consider forecasting with the Student-t GARCH(1,1) model, which can be written

as: ert = rt − μ = σtεt, (13)

σ2t = α1 + α2er2t−1 + α3σ
2
t−1, (14)

where the innovation εt is i.i.d Student-t distributed with mean 0 and variance 1 and ert are
demaned returns. We start with the following transformation:

er2t = α1 + (α2 + α3) er2t−1 + ωt − α3ωt−1, (15)

2Note that the constant term present in (1) does not enter in the estimation procedure. The unconditional
mean of log(|rt|+ C) can be captures by constructing τ t appropriately.
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where ωt = er2t −σ2t is the forecast error associated with the forecast of er2t based on its lagged
values (to see this, note that Et−1(er2t ) = Et−1(σ2t ε

2
t ) = σ2tvar(εt) = σ2t ). Thus, ωt is a white

noise process that is fundamental to er2t . The unconditional mean of er2t can then be computed
easily from (15), assuming α2 + α3 < 1, by

E
¡er2t ¢ = σ2 = α1/ (1− α2 − α3) .

The recursive form for the squared demeaned returns is

er2t − σ2 = (α2 + α3)
¡er2t−1 − σ2

¢
+ ωt − α3ωt−1

so that, for k > 1, the k-period ahead forecast of the squared demeaned returns is

Eter2t+k = σ2 + (α2 + α3)
k−1 ¡Eter2t+1 − σ2

¢
= σ2 + (α2 + α3)

k−1 ¡σ2t+1 − σ2
¢
,

where σ2t+1 = α1 + α2er2t + α3σ
2
t . To recover the forecasts for the squared returns, we make

the following adjustment, using the fact that the time variation in the conditional mean of

returns is quantitatively negligible:

Etr
2
t+k = Eter2t+k + (Etrt+k)

2 ≈ Eter2t+k + μ2.

We finally consider the FIGARCH(1,1) model, given by

ert = rt − μ = σtεt,

(1− α3L)σ
2
t = α1 + [1− α3L− (1− α2L) (1− L)d]er2t ,

where the innovation εt is i.i.d standard normal and (1− L)d =
P∞

j=0 πjL
j with

πj =
Γ (j + d)

Γ (j + 1)Γ (d)
=
Q
0<k6j

k − 1− d

k
.

To facilitate forecasting, we transform the conditional variance equation into an infinite order

ARCH representation:

σ2t = α1/ (1− α3) + λ (L) er2t ,
where λ1 = α2 − α3 + d and λk = α3λk−1 + [(k − 1− d)/k − α2]πk−1, for k > 2. Then, the
recursive forecasts can be constructed from

Eter2t+k = Etσ
2
t+k = α1/ (1− α3) +

t+k−1X
i=1

λiEter2t+k−i,
where Eter2t+k−i = er2t+k−i for i > k. To recover the forecasts of the squared returns, we adjust

Eter2t+k by adding back the squared mean, so that Etr
2
t+k ≈ Eter2t+k + μ2.
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5.2 Forecasting Comparisons

We start with an unfair but instructive comparison. For the GARCH(1,1) and FIGARCH(1,1)

models, we re-estimate every 20 observations. However, for the random level shifts model, we

use the fitted means obtained from the full sample, i.e., the fitted level shift process depicted

in Figure 1 obtained using the Bai and Perron (2003) algorithm and the number of breaks

implied by the full sample estimate of α, the probability of a level shift at each period. The

results are presented in Figure 3 (level shifts versus GARCH) and Figure 4 (level shifts ver-

sus FIGARCH). They show that the random level shift model has much better forecasting

performance at all horizons and for all series, except for very short horizons when considering

the AMEX and NASDAQ indices, in which case the GARCH and FIGARCH have a slight

advantage. As stated, this is an unfair comparison but it indicates that if we have a precise

estimate of the mean of log-absolute returns at a given date, we can obtain much better

forecasts from the level shift model than the other models.

The issue then becomes how to obtain a good estimate of the current mean of a regime

at a given date, at which the forecasts are made, without using information after that date.

This turns out to be a delicate issue. The use of the filtered estimates of τ t, the level

shift component, obtained via the Kalman filter algorithm are too volatile to be useful. An

obvious approach then is to repeat what we did for the full sample every 20 observations

and forecast using the estimate of the mean for the last regime. The problem here is that if

one allows for the possibility of a change at each date, as in the theoretical model, the fitted

values often indicate that a change occurred at the end of the sample when, ex-post, no such

long lasting change have occurred. In light of these issues, we resort to using a backwards

CUSUM procedure, as in Pesaran and Timmerman (1999). At each forecasting period, we

use the CUSUM test of Brown, Durbin and Evans (1975). We determine the cutoff point to

get the mean to forecast as the first time the CUSUM statistic crosses one of the critical lines,

determined by the criterion that the probability of at least one of the last 1,000 cumulative

sums of standardized recursive residuals crossing a line is 10%. Note that this procedure is

consistent with the model postulated. Indeed, with the assumption that the level shifts are

independent and identically distributed (and, hence, cannot be forecasted), the best forecast

is the mean obtained using the data from the last regime and some portion of the data prior.

The CUSUM is a procedure that effectively indicates the date at which a forecast failure

occurs and is, accordingly, the best suited from a forecasting perspective (see, e.g., Pesaran

and Timmerman, 1999).

The results are presented in Figure 5 (level shifts versus GARCH) and Figure 6 (level
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shifts versus FIGARCH). For the S&P 500 and Dow Jones indices, the level shift model

forecasts better than either the GARCH(1,1) or the FIGARCH(1,1) model at nearly all

horizons (except at a few isolated short horizons). For the AMEX and NASDAQ indices,

the GARCH(1,1) model performs better only at very short horizons, while the random level

shift model is better for longer forecasts. Compared to the FIGARCH(1,1) model, the

random level shift model performs better in the case of the AMEX index, except at a few

isolated short horizons. For the NASDAQ index, the level shift model performs better at

horizons greater than 100 days, but the FIGARCH model performs better at short horizons.

Following Anderson et al. (2003) and Stărică and Granger (2005), in the tradition of

Mincer and Zarnowitz (1969), we also evaluate the models’ relative forecasting accuracy by

regressing proxies for volatility on a constant and the forecast values provided by the various

models. We consider regressions of the form

r2t+p − r2t = b0 + b1(f
LS
t,p − r2t ) + b2(f

i
t,p − r2t ) + ut, (16)

where fLSt,p denotes the p-step ahead forecast of r2t+p from the level shift model and f it,p
denotes the p-step ahead forecast from the GARCH model (i = GA) or the FIGARCH

model (i = FI). See the discussion in Stărică and Granger (2005) for the choice of this

particular regression. The goal is to see first if the forecasts from the level shift model

are uncorrelated with the forecast errors from either of the two competitors. This is done

by testing the null hypothesis HA
0 : (b0, b1, b2) = (0, 0, 1) using a standard Wald test with

an asymptotic chi-square distribution. The results favor the level shift model if the null

hypothesis can be rejected. Conversely, one can test if the forecast errors from the level shift

model are uncorrelated with the forecasts from either of the two competitors. This is done

by testing the null hypothesis HB
0 : (b0, b1, b2) = (0, 1, 0) using again a standard Wald test.

The results favor the level shift model if the null hypothesis cannot be rejected. An outcome

for which the p-value for the test pertaining to HA
0 is less (resp., greater) than 5% and that

for the test pertaining to HB
0 is greater (respc., less) than 5% is viewed as evidence in favor

(resp., against) the level shift model. The cases for which both p-values are either greater

or smaller than 5% are viewed as providing no evidence in favor of either model.

The results are presented in Table 3 for various horizons between 20 and 200 days.

Consider first the comparison between the level shift and GARCH models. For the S&P 500

and AMEX indices, the evidence is in favor of the level shift model at all horizons. For the

Dow Jones index, the evidence is also in favor of the level shift model for horizons up to

100 days while for longer horizons the tests are inconclusive (both tests have p-values less
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than 5%). For the NASDAQ index, the level shift model is deemed superior for horizons

20, 40, 60, 80, 140 and 160 while the GARCH model performs better at horizons 100, 120

and 180 (for a horizon of 200 days, the evidence is inconclusive). Hence, the overall results

strongly indicate that the forecasting performance of the level shift model is superior to that

of the GARCH(1,1) model. When compared to the FIGARCH model, the level shift model

generally performs better at shorter horizons: up to 100 days for the S&P 500 and Dow

Jones indices, up to 60 days for the NASDAQ index and at horizon 20 for the AMEX index.

The FIGARCH occasionally performs better: at horizon 200 for the S&P 500 and AMEX

indices and at horizons 80, 100, 120 and 180 for the NASDAQ index. For all other cases,

the evidence does not favor one model over the other, using the criterion adopted.

Overall, the results are encouraging and show that the random level shift model is a seri-

ous contender as a forecasting model and that gains in forecast accuracy can be substantial.

These results are important since not only does the level shift model provide a better de-

scription of the data in sample, it does so without sacrificing forecasting performance, often

increasing it. Hence, level shifts appear to be genuinely present in the data and not simply a

modeling convenience that allows for a better in-sample fit. This contrasts with the common

perception that structural change models are not useful for forecasting.

6 Conclusion

In this paper, we first proposed a simple estimation method for a model of a series composed

of a random level shift and a short-memory component. The model, applied to log-absolute

returns of the S&P 500, AMEX, Dow Jones and NASDAQ indices, yields impressive results.

The level shift model with white noise errors appears to provide an accurate description of the

data. The level shift component is an important feature that explains the presence of both

the long-memory and conditional heteroskedasticity features that are generally perceived as

stylized facts. When accounting for level shifts, the evidence in favor of long-memory and

conditional heteroskedasticity disappears. The model can also provide important improve-

ments in forecasting volatility when using squared returns as a proxy. These are especially

noticeable when the mean of the regime in effect at the time of forecasting is well estimated.

Precise estimates of this mean are, however, difficult to obtain in real time. We have never-

theless shown that in many cases, forecasting improvements can still be obtained from our

model by using a backward recursive CUSUM test to determine the length of the last regime.

19



References

Andersen, T.G., and T. Bollerslev (1998), “Answering the Skeptics: Yes, Standard Volatility
Models Do Provide Accurate Forecasts,” International Economic Review 39, 885-905.

Anderson, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2001): “The Distribution of
Realized Exchange Rate Volatility,” Journal of the American Statistical Association 96, 42-
55.

Anderson, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2003): “Modeling and Forecast-
ing Realized Volatility,” Econometrica, 71, 579-626.

Bai, J., and P. Perron (2003), “Computation and Analysis of Multiple Structural Change
Models,” Journal of Applied Econometrics 18, 1-22.

Baillie, R.T., T. Bollerslev, and H.O. Mikkelsen (1996), “Fractionally Integrated Generalized
Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 73, 3—30.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal
of Econometrics 31, 307-327.

Bollerslev, T., and H.O. Mikkelsen (1996), “Modeling and Pricing Long Memory in Stock
Market Volatility,” Journal of Econometrics 73, 151-184.

Breidt, J.F., N. Crato, and P.J.F. de Lima (1998), “On the Detection and Estimation of
Long-memory in Stochastic Volatility,” Journal of Econometrics 83, 325—348.

Brown, R.L., J. Durbin, and J.M. Evans (1975), “Techniques for Testing the Constancy of
Regression Relationships Over Time,” Journal of the Royal Statistical Society B 37, 149-163.

Diebold, F., and A. Inoue (2001), “Long Memory and Regime Switching,” Journal of Econo-
metrics 105, 131-159.

Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of Vari-
ance of United Kingdom Inflation,” Econometrica 50, 987-1008.

Engle, R.F. (1995), ARCH: Selected Readings. Oxford University Press.

Engle, R.F., and A.D. Smith (1999), “Stochastic Permanent Breaks,” Review of Economics
and Statistics 81, 533-574.

Filardo, A. J., and S. F. Gordon (1998), “Business Cycle Durations,” Journal of Economet-
rics 85, 99-123.

Fuller, W. A. (1996): Introduction to Time Series (2nd ed.), New York: John Wiley.

Gourieroux, C., and J. Jasiak (2001), “Memory and Infrequent Breaks,” Economics Letters
70, 29-41.

Granger, C.W.J., and Z. Ding (1996), “Varieties of Long MemoryModels,” Journal of Econo-
metrics 73, 61-77.

Granger, C.W.J., and N. Hyung (2004), “Occasional Structural Breaks and Long Memory
with an Application to the S&P 500 Absolute Stock Returns,” Journal of Empirical Finance
11, 399-421.

20



Gray, S. (1996), “Modeling the Conditional Distribution of Interest Rates as a Regime
Switching Process,” Journal of Financial Economics 42, 27-62.

Hamilton, J. (1989), “A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business-Cycle,” Econometrica 57, 357-384.

Harrison, P. J., and C. F. Stevens (1976), “Bayesian Forecasting,” Journal of the Royal
Statistical Society, Series B 38, 205-247.

Harvey, A.C. (1998), “Long Memory in Stochastic Volatility,” in Forecasting Volatility in
Financial Markets, ed. by J. Knight and S. Satchell. Oxford: Butterworth-Heineman, 307-
320.

Lamoureux, C.G., and W.D. Lastrapes (1990), “Persistence in Variance, Structural Change,
and the GARCH Model,” Journal of Business & Economic Statistics 8, 225-234.

Lobato, I.N., and N.E. Savin (1998), “Real and Spurious Long-memory Properties of Stock-
market Data,” Journal of Business and Economics Statistics 16, 261-268.
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Table 1: Maximum Likelihood Estimates.
ση α σe φ

S&P 500 0.75123 0.00145 0.73995

(SD: 0.8021) 0.74290 0.00150 0.73950 -0.01040

AMEX 0.98696 0.00246 0.70346

(SD: 0.7773) 1.08830 0.00167 0.70607 0.06321

Dow Jones 0.95720 0.00100 0.73947

(SD: 0.7888) 0.95860 0.00103 0.73909 -0.00984

NASDAQ 1.45396 0.00077 0.74255

(SD: 0.8528) 1.45589 0.00076 0.74258 0.00070



Table 2.a: S&P 500 and Dow Jones; Parameter Estimates; GARCH and CGARCH models 
 
 

S&P500   
Coefficient Estimate Std. Error t-Statistic  p-value 

 βr 0.066 0.005 14.38 0 No level shifts  
in GARCH βσ 0.932 0.005 209.35 

 
0  

 βr 0.047 0.007 7.14 0 
 βσ 0.926 0.010 89.07 0 
 

ρ 0.9998 0.0003 3149.13  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 
No level shifts  
in CGARCH 

φ 0.027 0.005 5.36 0 

βr 0.009 0.011 0.786 0.432 

βσ 0.151 1.186 0.127 0.899 

ρ 0.942 0.007 141.92 0 
Level shift in CGARCH  

(using the Bai-Perron algorithm) 

φ 0.062 0.006 9.65 0 

βr -0.090 0.067 -1.33 0.183 

βσ 0.494 0.288 1.72 0.088 

ρ 0.622 0.006 109.42 0 
Level shifts in CGARCH 

(using the smoothed estimate) 

φ 0.149 0.069 2.17 0.030 

Dow Jones 
 

Coefficient Estimate Std. Error t-Statistic p-value 

βr 0.059 0.004 14 0 No level shifts  
in GARCH βσ 0.935 0.004 212.39 0 

βr 0.041 0.007 5.889 0 

βσ 0.931 0.010 91.23 0 

ρ 0.998 0.001 1044.74 0 
No level shifts 
in CGARCH 

φ 0.023 0.006 3.709 0 

βr 0.015 0.010 1.48 0.139 

βσ 0.034 0.629 0.053 0.958 

ρ 0.948 0.007 140.6 0 
Level shift in CGARCH  

(using the Bai-Perron algorithm) 

φ 0.053 0.006 9.47 0 

βr -0.047 0.031 -1.51 0.129 

βσ 0.460 0.332 1.38 0.167 

ρ 0.726 0.010 69.44 0 
Level shifts in CGARCH 

(using the smoothed estimate) 

φ 0.092 0.031 2.93 0.003 



Table 2.b: AMEX and NASDAQ; Parameter Estimates; GARCH and CGARCH models 
 
 

AMEX     
Coefficient Estimate Std. Error t-Statistic  p-value 

 βr 0.127 0.007 17.15 0 No level shifts  
in GARCH βσ 0.867 0.007 124.77 0 

βr 0.123 0.010 12.01 0 

βσ 0.797 0.018 43.49 0 

ρ 0.999 0.001 973.16 0 
No level shifts  
in CGARCH 

φ 0.035 0.006 5.82 0 

βr 0.050 0.020 2.57 0.010 

βσ -0.045 0.291 -0.155 0.877 

ρ 0.854 0.018 48.39 0 

Level shift in CGARCH  
(using the Bai-Perron 

algorithm) 

φ 0.114 0.015 7.54 0 

βr -0.000 0.021 -0.01 0.992 

βσ 0.140 69.13 0.002 0.998 

ρ 0.719 0.005 158.6 0 
Level shifts in CGARCH 

(using the smoothed estimate) 

φ 0.147 0.019 7.53 0 

NASDAQ 
 

Coefficient Estimate Std. Error t-Statistic p-value 

βr 0.094 0.007 14.40 0 No level shifts  
in GARCH βσ 0.904 0.006 145.36 0 

βr 0.082 0.010 7.83 0 

βσ 0.839 0.023 36.16 0 

ρ 0.9999 0.000 4964.46 0 
No level shifts 
in CGARCH 

φ 0.039 0.005 7.39 0 

βr 0.049 0.017 2.91 0.004 

βσ 0.068 0.304 0.222 0.824 

ρ 0.952 0.008 122.69 0 

Level shift in CGARCH  
(using the Bai-Perron 

algorithm) 

φ 0.086 0.01 8.85 0 

βr -0.017 0.059 -0.29 0.771 

βσ 0.787 0.643 1.22 0.221 

ρ 0.876 0.0004 2488.73 0 
Level shifts in CGARCH 

(using the smoothed estimate) 

φ 0.130 0.061 2.14 0.032 



Table 3: Comparison of forecasting performance between the level shift, GARCH and FIGRACH models.

p value of Wald statictics for p value of Wald statictics for
Horizon HA

0 HB
0 HA

0 HB
0 HA

0 HB
0 HA

0 HB
0

p (days) fLSt,p ⊥ eGRt,p eLSt,p ⊥ fGRt,p fLSt,p ⊥ eFIt,p eLSt,p ⊥ fFIt,p fLSt,p ⊥ eGRt,p eLSt,p ⊥ fGRt,p fLSt,p ⊥ eFIt,p eLSt,p ⊥ fFIt,p

S&P 500 Dow Jones
20 0.00 0.64 0.00 0.57 0.00 0.13 0.00 0.09
40 0.00 0.85 0.01 0.75 0.00 0.55 0.00 0.55
60 0.00 0.79 0.00 0.45 0.00 0.43 0.00 0.25
80 0.00 0.99 0.08 0.58 0.00 0.24 0.00 0.18
100 0.00 0.67 0.05 0.36 0.00 0.26 0.00 0.17
120 0.00 0.54 0.13 0.09 0.00 0.00 0.00 0.00
140 0.00 0.50 0.27 0.07 0.00 0.02 0.00 0.06
160 0.00 0.96 0.32 0.19 0.00 0.01 0.00 0.02
180 0.00 0.97 0.30 0.27 0.00 0.00 0.00 0.04
200 0.00 0.17 0.11 0.02 0.02 0.00 0.04 0.00

AMEX NASDAQ
20 0.00 0.68 0.04 0.51 0.00 0.48 0.00 0.53
40 0.00 0.58 0.26 0.15 0.00 0.80 0.00 0.94
60 0.00 0.67 0.42 0.14 0.00 0.76 0.08 0.44
80 0.00 0.69 0.51 0.35 0.00 0.12 0.07 0.01
100 0.00 0.64 0.53 0.18 0.35 0.00 0.16 0.00
120 0.00 0.52 0.39 0.31 0.22 0.00 0.45 0.00
140 0.00 0.86 0.79 0.12 0.00 0.40 0.66 0.10
160 0.00 0.78 0.71 0.11 0.00 0.49 0.53 0.11
180 0.00 0.85 0.79 0.11 0.12 0.00 0.35 0.00
200 0.00 0.93 0.67 0.03 0.00 0.00 0.01 0.00
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Figure 1.a: S&P 500; fitted level shift component (right axis) and series (left axis). 
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Figure 1.b: Dow Jones; fitted level shift component (right axis) and series (left axis). 
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Figure 1.c: AMEX; fitted level shift component (right axis) and series (left axis). 
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Figure 1.d: NASDAQ; fitted level shift component (right axis) and series (left axis).



 

 
            Figure 2.a: S&P 500; Autocorrelations.                 Figure 2.b: Dow Jones; Autocorrelations.  

 
 



 

 

  
Figure 2.c: AMEX; Autocorrelations. Figure 2.d: NASDAQ; Autocorrelations. 
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Figure 3: In-sample level shift versus out-of-sample GARCH forecasts 
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Figure 4: In-sample level shift versus out-of-sample FIGARCH forecasts 
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Figure 5: Out-of-sample level shift versus out-of-sample GARCH forecasts 
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Figure 6: Out-of-sample level shift versus out-of-sample FIGARCH forecasts 




